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In this paper, an in-depth study and analysis of attribute modelling and knowledge acquisition of massive images are conducted
using image recognition. For the complexity of association relationships between attributes of incomplete data, a single-output
subnetwork modelling method for incomplete data is proposed to build a neural network model with each missing attribute as
output alone and other attributes as input in turn, and the network structure can deeply portray the association relationships
between each attribute and other attributes. To address the problem of incomplete model inputs due to the presence of missing
values, we propose to treat and describe the missing values as system-level variables and realize the alternate update of network
parameters and dynamic filling of missing values through iterative learning among subnets. The method can effectively utilize
the information of all the present attribute values in incomplete data, and the obtained subnetwork population model is a fit to
the attribute association relationships implied by all the present attribute values in incomplete data. The strengths and
weaknesses of existing image semantic modelling algorithms are analysed. To reduce the workload of manually labelling data,
this paper proposes the use of a streaming learning algorithm to automatically pass image-level semantic labels to pixel regions
of an image, where the algorithm does not need to rely on external detectors and a priori knowledge of the dataset. Then, an
efficient deep neural network mapping algorithm is designed and implemented for the microprocessing architecture and
software programming framework of this edge processor, and a layout scheme is proposed to place the input feature maps
outside the kernel DDR and the reordered convolutional kernel matrices inside the kernel storage body and to design
corresponding efficient vectorization algorithms for the multidimensional matrix convolution computation, multidimensional
pooling computation, local linear normalization, etc., which exist in the deep convolutional neural network model. The
efficient vectorized mapping scheme is designed for the multidimensional matrix convolution computation, multidimensional
pooling computation, local linear normalization, etc. in the deep convolutional neural network model so that the utilization of
MAC components in the core loop can reach 100%.

1. Introduction

With the rapid development of Internet technology, the
carrier of information has developed from the traditional
textual record to a richer multimedia record. Multimedia
carriers such as image, voice, and video contain all kinds of
information. Unlike textual records, which contain many
abstract concepts, multimedia information content is mostly
described as figurative sensory information. How to make
artificial intelligence learn to understand multimedia content
while correlating abstract textual semantic information with

intuitive multimedia content has become a research topic of
increasing interest in recent years [1]. In this paper, we focus
on learning multimodal correlations between images and
text, starting with basic multimodal data association, and
automatically constructing large-scale image-text mapping
datasets based on the complementarity between images
and text to lay the foundation for subsequent research work
[2]. First, start with the basic multimodal data association,
relying on the complementarity between the image and the
text to automatically construct a large-scale image-text
mapping dataset, which lays the foundation for subsequent
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research work. Then, a large-scale weakly supervised data-
based feature learning method for the image-text association
is introduced to learn both image feature representation and
text feature representation in a unified feature space and
model the correspondence between them. Finally, two key
applications on multimodal association learning are pre-
sented: crossmodal image retrieval and multimodal inferen-
tial visual quizzing, and a variety of different solutions
corresponding to these two applications are provided. With
the advancement of deep learning techniques based on
images and text in their respective domains, research on
the correlation analysis between the two different modalities,
images and text, and their corresponding applications
have become increasingly important. However, the abstract
nature of the text and the figurative representation of images
are very different, which makes text-image-based correlation
analysis a complex learning task [3].

Imagine that the human brain perceives things by pro-
cessing visual signals and speech signals simultaneously,
combining the two to build cognition. This multimodal
interaction is very important in the cognitive and learning
process of the human brain. Moreover, this multimodal
way of thinking can often directly affect the human brain’s
reasoning and judgment, for example, vision-based question
and answer tasks need to synthesize the meaning of speech
signals and visual information to establish a connection
and then reason [4]. If we can well solve the multimodal
association learning tasks based on images and texts, this
will provide two major areas of technology integration and
mutual enhancement of images and texts. Study the repre-
sentation of product design knowledge and modelling of
product design tasks. The modelling of design tasks is
defined based on knowledge modelling to integrate the
design task space and knowledge space effectively. Image
semantic modelling technology is a requirement of the
times. Facing the massive visual data generated daily on
the Internet, efficient data processing and analysis tech-
niques are important research topics that can be widely used
in image and video recognition, classification, and retrieval
[5]. In image semantic modelling, it is a challenging task to
extract discriminative features. Introducing human visual
mechanisms into image semantic modelling makes the
computer perception of images more closely match human
behaviour. The research on this topic is important for image
processing and can be applied to many applications [6].

Semantic description of objects in an image is an
effective way to address the “semantic gap.” The most
important aspect of attribute learning is how to obtain the
attribute labels of an image. To obtain objects with semantic
information in an image, the traditional way is to manually
annotate the image data. However, manual annotation is
time-consuming and labour-intensive in the face of large
image databases. Therefore, attribute annotation methods
based on target detectors or target filters are born. Ideally,
the image needs to be scanned using all the target detectors
to obtain the responses of different objects so that the
semantic attributes of the image can be annotated automat-
ically. However, this process is not achievable in practice; on
the one hand, there is not enough research to build sophisti-

cated target detectors for a huge number of generic objects;
on the other hand, the semantic hierarchy problem becomes
acute as the number of target objects in an image increases,
and not all objects in the image contributes to the semantic
modelling of the image. With the progress and development
of image and text based on deep learning technology in their
respective fields, the research on the correlation analysis
between the two different modalities of image and text and
the corresponding applications has become increasingly
important. It is pointed out that it is possible to annotate
videos using 3000-4000 objects and achieve satisfactory
results. In the context of big data, while paying attention to
model accuracy should also pay more attention to the
operational efficiency and deployment feasibility of algorith-
mic models in the big data environment, only algorithms
with a better trade-off between algorithm performance and
implementation efficiency can meet the practical needs. Big
data puts higher demands on the software and hardware
environment of computers, and deep learning models
mostly require huge computing resources and efficient
computing power. The existing software and hardware envi-
ronment has severely restricted the research and application
of deep learning-based image understanding technology,
especially for the increasing number of edge devices, so that
deep learning algorithms can run on edge devices to make
them have intelligence as the current and future develop-
ment trend in the general environment of IoT. This
requires researchers to explore more efficient model train-
ing devices and endpoint inference platforms and corre-
sponding software development platforms and efficient
algorithm libraries.

2. Status of Research

Global feature-based modelling algorithms have the advan-
tages of good invariance, computational simplicity, etc.,
which describe the overall properties of an image, such as
colour, texture, and shape features. In general, global fea-
tures represent the image as a fixed-length feature vector
for task learning purposes [7]. Colour- and shape-based fea-
ture fusion and Euclidean distance approach is proposed for
image retrieval, and the image database used for the experi-
ments contains 150 colour images and 250 grayscale images
[8]. The results show that the integrated colour- and shape-
based feature representation makes 99% of the images
retrieved in the first two positions. Image comparison using
colour coherence vectors (CCV) is proposed, which can
overcome the drawback of traditional colour histogram-
based algorithms that lack spatial information. The algo-
rithm classifies each pixel as coherent or incoherent
according to whether each pixel in each colour set belongs
to the maximum similar colour region, where the CCV
stores the number of coherent and incoherent pixels for
each colour. The algorithm can be applied to image
retrieval due to its good real-time performance [9]. A holis-
tic representation based on the spatial envelope is proposed
to model the image scene, where the spatial envelope is a
low-dimensional representation of the image scene. The
authors propose five perceptual dimensions, including
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natural, open, rough, dilated, and solid, which can repre-
sent the main spatial structure of the image scene [10].

The spatial envelope model generates a multidimensional
space in which scenes with sharedmembers in semantic catego-
ries are projected together [11]. A model for generating image
descriptions based on a multiple attention mechanism is pro-
posed. Multiple attention modules constructed introducing
the focus of human attention on a certain region of an image
during image observation into the image description domain
[12]. First, an attention module based on image feature encod-
ing is constructed for generating weights for each featuremap in
the channel direction, explicitly modelling the importance
between feature channels; then, a spatial attention module is
constructed for focusing on a specific region of the image fea-
ture extraction module on the output feature map in the decod-
ing phase; then, a textual attention module is constructed for
focusing on the decoding phase to generate utterances correla-
tions exist between them, and the contributions of the three
attention modules to the final model are evaluated using abla-
tion experiments; finally, a complete multiple attention model
is constructed based on the three attention modules proposed
above and is learned using supervised training [13]. The
experimental results on several classical datasets show that the
proposed model better models the relationships between vari-
ous objects in images and the correlations between targets and
corresponding texts and achieves good experimental results.

However, in the face of more fine-grained visual content
understanding tasks, such as the several types of fine-grained
visual understanding tasks studied in this paper, there is still
much room for improvement in existing deep learning
models [14]. First, existing deep models tend to use deeper
single models to improve network performance, and these
models have the advantage of simple structure and easy
end-to-end training. However, single models tend to focus
on only a limited number of local features and are unable
to understand the dependencies between deeply detailed
features, such as the temporal correlation of videos and the
spatial correlation of objects [15]. The correlations of these
detailed features are crucial for fine visual understanding,
so to better solve fine image understanding tasks, the corre-
lations between model-detailed features must be better
considered in the models. Second, existing models are often
single-stage, where the model reads the input information
and outputs the target directly [16]. For fine-grained visual
understanding tasks, the output of single-stage models is
often inaccurate. For example, when comparing two very
similar images, it is a common human practice to compare
the most discriminative regions of the two images, and if
no conclusion can be reached, then move on to the next
detailed region, a process that continues to repeat itself until
a conclusion is reached. This process may seem complex, but
it encompasses the human idea of parsing fine visual tasks
incremental learning. By splitting the single-stage model into
multiple incremental stages, it allows the model to better
learn detailed information and gradually output results with
a higher confidence level. Therefore, the main research idea
of this paper is to use the idea of progressive learning to
improve the learning problem of relevant features in fine
visual understanding tasks.

3. Analysis of Massive Image Recognition
Algorithms for Attribute Modeling and
Knowledge Acquisition

3.1. Attribute Modelling and Knowledge Acquisition Image
Recognition Algorithm Design. Attribute learning can effec-
tively solve the problem of the “semantic gap” generated by
underlying visual feature-based algorithms. Attribute learning
can describe the semantic information of an image and can be
applied to various image processing applications, including
image scene classification and image retrieval. Semantic
description of objects in an image is an effective way to solve
the “semantic gap.” The most important aspect of attribute
learning is how to obtain the attribute labels of an image. In
the second stage, the classifier is used to determine the catego-
ries of objects in these boxes. The two-stage fine-grained
recognition framework and target detection framework are
more complicated than the single-stage framework, but can
achieve better performance. To obtain objects with semantic
information in images, the traditional way is to manually
annotate the image data. However, manual annotation is
time-consuming and labour-intensive in the face of huge
image databases. Therefore, attribute annotation methods
based on target detectors or target filters are born. Ideally,
the image needs to be scanned using all the target detectors
to obtain the responses of different objects so that the semantic
attributes of the image can be annotated automatically. How-
ever, this process is not achievable in practice; on the one
hand, there is not enough research to build mature target
detectors for a huge number of generic objects; on the other
hand, the semantic hierarchy problem becomes acute as the
number of target objects in an image increases, and not all
objects in an image contribute to image semantic modelling.
There is a huge amount of image data in the real world, and
the existing datasets can only collect and label a very small
fraction of it. Thus, for image recognition and classification
tasks, the amount of data available for learning is far from suf-
ficient. For the lack of training samples of the target classes in
the test set, the algorithm cannot learn effective classification/
recognition features from the available data. Searching the
attributes of each object class to train the classifier is a very
tedious task and not easy to implement. Therefore, how to
efficiently learn high-level attribute features from existing
datasets is a popular topic that attracts researchers. Traditional
supervised learning-based classifiers can only identify the
learned object classes and cannot be used for the classification
of other objects. For example, classifiers learned from dog and
cat datasets can only be used for dog and cat image classifica-
tion, but not for horse and cow classification. Since it makes
more sense to identify the concept of high-level attributes of
images than object categories, we can use existing datasets to
learn object attributes across categories.

p a xjð Þ =
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To address the variability of attribute relationships
between different sample categories, we consider dividing the
overall object into several parts, constructing linear models
for each part separately, and finally, smoothing these local
linear models to obtain the global model [17]. The main idea
of the T-S fuzzy model is to fuzzy partition the input space
and then approximate the global nonlinear model with the
local linear model. Therefore, the T-S model is introduced into
incomplete datamodelling, and its idea of modelling by class is
used to cope with the challenges posed by the variability of
attribute relationships between classes and thus improve the
fitting accuracy of the regression model. Traditional image
recognition dataset construction is generally done in an unsu-
pervised way to obtain data based on direct search in search
engines using category names, such as the Tiny Image dataset.
However, this method is limited by the performance of the
search engine, and the general search engine for image
description information is based on the text description
around the image in the web page to do document retrieval,
and the returned search results are sorted according to user’s
click behaviour, which leads to the dataset constructed based
on thismethod generally has more noise andmore serious bias
(as shown in Figure 1).

In this paper, we propose the idea of incremental learn-
ing to improve the generic deep learning model, which we

call deep incremental learning, and the proposed incremen-
tal learning framework differs from the above framework in
the following ways. Unlike the generic single-stage deep
learning framework, the proposed deep progressive learning
framework divides the task into multiple stages, with each
stage focusing on information at a certain detail level of
the object, and as the stages deepen, the detailed information
gradually accumulates, and model’s understanding of the
object increases, eventually leading to a deep understanding
of the object. This multistage design splits the difficulty of
the fine visual understanding task and avoids the generic
model focusing only on a certain discriminative region,
allowing the model to better mine and understand the fine
object features. The modelling of design tasks is defined
based on knowledge modelling, and the design task space
and knowledge space are effectively integrated. Image
semantic modelling technology is the requirement of the
development of the times. Also, different from the tradi-
tional independent multistage framework of computer
vision, there is a tight connection between the multiple
stages in the deep progressive learning framework. Depend-
ing on the task, the relationship between different stages can
be flexibly defined. There can be temporal associations,
spatial associations, interaction associations, modal associa-
tions, etc. between stages, and these associations make the
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Figure 1: Framework of attribute modelling and knowledge acquisition image recognition algorithm.

4 Advances in Mathematical Physics



progressive learning framework form an organic whole. In
most application scenarios in the subsequent sections, this
multistage progressive framework does not affect the end-
to-end training of the model.

Thus, the main advantage of the proposed progressive
learning framework is that it retains the features of the
generic deep learning framework while better mining the
fine-grained detailed features of objects, enabling the
model to achieve deeper and more fine-grained visual
understanding.

J W, b, x, yð Þ = 1
3

hw,b xð Þ + y
�� ��2,

δ
ni−1
i =

∂J W, b, x, yð Þ
∂zi n − 1ð Þ :

ð2Þ

Weight sharing means that the weights do not change
with position when each convolutional kernel performs slid-
ing window computation in different regions on the picture,
i.e., the same convolutional kernel is used to characterize
different regions of the picture. The local connectivity and
weight-sharing mechanisms can greatly reduce the parame-
ters of the network, allowing for deeper network learning
with limited computational resources. Specifically, to obtain
an output feature map of a convolution operation, the result
of the convolution of the corresponding convolution kernel
with each input feature map is first computed; the results
are linearly combined and then obtained by an activation
function.
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For image datasets constructed based on deep neural
networks, there will be many noisy images that are not
in the known category included, but such noisy images
can be easily detected by textual information. As the num-
ber of target objects in an image increases, the problem of
semantic hierarchy becomes acute. Not all objects in the
image contribute to image semantic modelling. Similarly,
for an image dataset constructed only based on textual
information in web pages, many visually irrelevant and
semantically ambiguous images can be easily detected by
the visual discriminative model obtained from deep neural
network learning. Because the confidence level of visually
irrelevant noisy images is generally low, the image scenes
with textual ambiguities are often very different from the
correct category counterparts and can then be detected
by a neural network model based on visual information.
Considering the complementary nature of text-based and
visual information, this paper proposes a new solution
for automatic data augmentation: a deep neural network
technique based on visual information is organically com-
bined with a text information mining technique based on

Internet web pages to automatically construct image data-
sets.

εVTweb = <I, c> : f c Ið Þ ≤ αf g,
T = <T1, T2> : f c Ið Þ ≥ αf g,

p yi = cð Ti, ti, diÞ =
ef yi=cð Ti ,ti ,dij Þ

∑C
k=1e

f y=kð Ti ,ti ,dij Þ

����� :

ð4Þ

In the research of image analysis and understanding,
datasets play an important role; image datasets can be used
to test the performance of image feature extraction and
detection models, to compare different methods through
experiments, and thus, to discover the strengths and
weaknesses of different models to help further research
improvements, in addition, with the creation of richer, better,
and more challenging image databases that continue to drive
the computer vision technology development. Image data-
bases are a process from small to large and simple to
complex, from the simplest handwritten character font data-
bases to simple image classification datasets to natural image
datasets. Their establishment has greatly contributed to the
advancement of image understanding techniques in each
period of the computer vision development (as shown in
Figure 2).

Since only the distance between the central superpixel
and the adjacent superpixels is calculated during the con-
struction of the micrograph, the size of the micrograph is
limited, which leads to the fact that the size and number of
superpixels have a great influence on the construction of
the micrograph: small superpixels cannot capture larger
semantic objects, and large superpixels cannot capture
smaller semantic regions [18]. Attribute labelling methods
based on target detectors or target filters came into being.
Ideally, it is necessary to use all target detectors to scan the
image to obtain the response of different objects, so that
the semantic attributes of the image can be automatically
labelled. The SLIC parameters affect the annotation accu-
racy; however, since the semantic regions of different images
vary in size and number, setting a uniform parameter is not
possible. For this reason, we use three SLIC parameters for
superpixel segmentation, 100, 150, and 200, i.e., the same
image is repeatedly segmented three times with the number
of superpixels of 100, 150, and 200 each time.

Then, we set the number of seed points to 10, 15, and 20
for each of these three sizes of images. During further merg-
ing of superpixels. In the process of further merging, we
discard the micrographs with the number of superpixels less
than or equal to 2, because they usually do not contain any
semantic regions and do not contribute to the image pro-
cessing task. We then fuse these micrograph regions, i.e.,
micrographs acquired for images of either specification are
used as candidate regions.

Al =
1
N
〠
N

i=1

mi

ni
: ð5Þ
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The desired default candidate detection frames can be
generated on the six output feature maps of the model. First,
a minimum square target detection frame and a maximum
square target detection frame are generated in the current
layers to match the small and large targets at that location.
It is stretched or widened to match the long or wide target
at that location in the image. The process of generating the
default target detection box in the feature map is shown in
Figure 2. By traversing each position in the feature map, all
the default detection frames at that feature map size are
generated, and the above process is repeated for six different
sizes of detection maps in the constructed model, and even-
tually, the model generates all the default detection frames.
Since it is traversing all the positions of the feature map,
different target detection frames are generated for each posi-
tion, but not every position in the image has a target, so in
the next step, the default generated target detection frames
need to be filtered based on the real target position to find
the best matching target detection frame.

3.2. Experimental Design of Image Recognition Algorithms.
These models tend to achieve relatively good results for
general-purpose tasks, but for more fine-grained under-
standing tasks and higher performance pursuits, single-
stage models still have performance bottlenecks. For
example, for fine-grained image recognition tasks, currently,
popular frameworks generally divided into two phases, with
the first phase targeting the localization of foreground
objects and filtering out background interference, followed
by the second phase classifying the objects. The two-stage

target detection model is also a typical multistage frame-
work, where the first stage extracts possible candidate region
boxes on the image or feature map, and the second stage
then uses a classifier to determine the class of objects within
these boxes. Two-stage fine-grained recognition frameworks
and target detection frameworks are more complex com-
pared to single-stage frameworks but can achieve better
performance [19]. Inspired by existing multistage model
frameworks, the proposed deep progressive learning frame-
work in this paper generally contains multiple configurable
stages, which can be flexibly configured depending on the
task (as shown in Figure 3). For example, for the task of
video understanding, the computation of each time node
can be divided into one stage; for the task of fine-grained
image recognition, we divide the framework into multiple
stages according to the understanding of different parts of
the object; for the task of interactive action recognition, we
divide the model into three stages according to the individ-
ual information, the overall information, and the interaction
information; and for the task of video generation, we divide
the model into two stages: structure generation and pose
migration phases. The configurable multistage framework
structure splits the overall task difficulty, allowing the indi-
vidual stages to better focus on different detailed features
of the object, thus making it more suitable for fine-grained
visual understanding tasks.

The given fine-grained visual understanding task needs
to be analysed first, focusing on the problems of the single-
stage model in handling such tasks, and the task needs to
be split for the existing problems, to reduce the difficulty of
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Figure 2: Module structure.
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the task at each stage, and the task needs to satisfy configur-
ability after splitting. The question of how to effectively split
fine-grained tasks is an open-ended one, and there is no
single definitive answer. In practice, it is necessary to fully
think about the requirements of fine-grained tasks, con-
stantly reflect on the shortcomings of existing models, dig
deeper into the deep semantic associations that exist in the
data, split the task into multiple stages as simply and intui-
tively as possible, and ensure that there is some semantic
association between the stages. Task splitting is the first stage
of deep incremental learning, and different splitting methods
have a direct impact on subsequent model design, so it is
necessary to make bold assumptions, seek proof carefully,
and choose the most likely effective solution from the
alternatives to try.

yij =wi0 − 〠
s

l=1,l≠j
wilxikl ,

L x, p, g, c, tð Þ = 1 + α

N
Lloc x, p, gð Þ − β − 1ð ÞLloc x, c, tð Þ:

ð6Þ

Based on the split task, a suitable progressive model
needs to be designed, which not only needs to learn the
subtasks at each stage but also needs to satisfy the overall
task requirements, i.e., the proposed model needs to satisfy
the scalability. Therefore, the model design generally
contains two levels, i.e., the subtask level and the overall
task level. The model design generally uses generic deep
learning models, e.g., the individual subtasks tend to have a
single learning goal and are more suitable to be modelled
using convolutional neural networks, while integrating

subtasks into the overall task is a process of information
aggregation and tools such as recurrent neural networks
and long and short-term memory networks can be
considered. Model design is the core stage of deep
progressive learning, and it directly affects the final model
performance. When designing the model, it is necessary to
consider both the local and overall nature of the task, to
reasonably select and designs the model structure for
different stages according to the correlation between the
subtasks and the overall task, and to actively think about
and innovate the traditional model structure, so that the
designed model can better meet the task requirements.

σ = 0, 1 + c1
∑k

φ=1cφ
,⋯, 1 +

ck
∑k

φ=1cφ

 !
,

pw = p′ Qð Þ Q
p Qð Þ

Yt−1
1

pd Rið Þ
∑dpd Rið Þ ⋅ d Rið Þ :

ð7Þ

In this way, based on the learned category model, we
divide each micrograph into known and unknown classes
and cluster the unknown classes based on their shape
similarity and their position to the surrounding known
objects. To model interclass interactions, we use object
graph descriptors to encode the layout of the unknown
objects. The entire approach does not require knowledge of
all object classes in the image but allows for the extraction
of useful clues from known objects to better detect new
objects.

d gð Þ = H0 gð Þ,H1 gð Þ,⋯,HR gð Þ½ �2: ð8Þ
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Based on the detected unknown category micrograph,
we model it and its surrounding contextual information.
To reduce the difficulty of the task at each stage, the
configurability must be satisfied after the task is split.
How to effectively split fine tasks is an open-ended
question, and there is no single definite answer.
Specifically, we build a graph representing interactions
between objects with nodes that are known objects and
edges that connect neighbouring objects. We can then
match any two such graphs to determine how well the
object-level context agrees for the two candidate regions
that may be grouped. Regions with similar contexts will
have similar graphs, while regions with dissimilar contexts
will produce different graphs. If the classification of image
superpixel segmentation and micrographs is precise,
then the graphs we construct are idealized in the sense
that we can simply count the number and type of
known objects and record their relative layout (as
shown in Figure 4).

In practice, however, image segmentation and classifi-
cation algorithms are not perfect, which leads to the fact
that we cannot always obtain good classifiers. Although
we cannot correct mislabelled known and unknown
regions, we can introduce uncertainty into the contextual
description of the object, which can make misclassified
known regions more robust [20]. Linear regression model-
ling approaches assume that incomplete data attributes
have linear relationships with each other, describing the
association between attributes in terms of straight lines,
planes, or hyperplanes and solving for the model parame-
ters using least squares. However, the attribute relation-
ships may vary from sample to sample in the actual
data, and the overall trend of attribute relationships is
nonlinear, then the linear model constructed for the data
is bound to have some deviation from the actual regres-
sion relationships.

4. Results and Analysis

4.1. Attribute Modelling and Knowledge Acquisition Image
Recognition Algorithm Performance. We compare our algo-
rithm with SIFT-Bow, GIST, and SPM algorithms, and deep
learning algorithms based on Reset networks after denoising
the image semantic labels, we use a stream learning algorithm
to automatically pass the image-level labels to the pixel level.
After the semantic labelling is completed, the micrographs are
proposed and optimized. Since the micrograph is a polygon
with irregular edges, we use the outermost box enclosing the
box to approximate the representation of the micrograph and
scale the micrograph to 112 × 112. Then, we perform deep fea-
ture extraction according to the network architecture, and we
train a simple support vector machine (SVM) to perform image
classification. The experimental results are shown in Figure 5.
Images with noisy labels are processed, and the algorithm
achieves a classification accuracy of 68.51% for the VOC2012
dataset, which is lower than the classification accuracy of the
Reset network and the classification accuracy of our method
without noisy labels. Since our method cannot fully comple-
ment the missing and eliminate the wrong labels, these noisy
labels affect the label delivery and the extraction of the micro-
graphs, which in turn affects the image classification accuracy.

The analysis in Figure 6 shows that those characteristics
of the target have a large impact on the detection perfor-
mance of the model. The area of the anchor frame shows
that the model performs significantly better on most targets
for large objects than for small ones, and the size of the
target is more sensitive to the performance of the model.
The microimage is scaled to 112 × 112, and then, deep fea-
ture extraction is performed according to the network archi-
tecture. We train a simple support vector machine (SVM) to
perform image classification. The aspect ratio shows that the
model has better detection performance for medium-sized
objects, i.e., better detection performance for targets with a
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bias towards squares, but there are large differences between
categories for very high or very wide targets, but overall, the
aspect ratio of the target is less sensitive to model’s detection
performance than the effect produced by the anchor frame
area. Although the above analysis does not directly improve
the detection performance of the model, it can help us to
reasonably evaluate the advantages and disadvantages of
several models and give reference to further improve the
model performance.

The user click behaviour data generally shows a heavily
heavy-tailed distribution. Typically, only a few words appear

frequently, while most words appear very infrequently. This
also means that the training process frequently passes many
similar output signals to the deep convolutional neural net-
work. This results in the response values of the convolu-
tional kernels corresponding to the frequently occurring
visual templates being much larger than the response values
of the other convolutional kernels, and most of the convolu-
tional kernels in the network will then tend to respond to
those visual template inputs that occur more frequently. As
a result, there will be many similar convolutional kernels
during the training of the neural network at the beginning,
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and such many similar convolutional kernels wastes a large
amount of parameter space of the neural network, resulting
in slow convergence of the neural network.

4.2. Experimental Results. For each missing rate, five
incomplete datasets randomly generated for each complete
dataset, and the attribute association models were built for
the incomplete data based on the subnet iteration method
and the linear regression method, respectively, and the
missing value filling error MAPE was calculated for the
two methods, which measured the accuracy of fitting the
attribute relationships of the two models to the incomplete
data. Figure 7 shows the filling results of both methods,
SONN+IL and LR, for each missing rate of the eight exper-
imental datasets.

The most essential difference between the SONN+IL and
LR methods is that the attribute regression model built by
the SONN+IL method for incomplete data is nonlinear,
while the LR method builds a linear model. Nonlinearity is
one of the typical properties of complexity in nature. Com-
pared with linearity, nonlinearity is usually closer to the
objective nature itself, so the attribute regression model built
based on the subnet iteration method is closer to the real
correlation relationship between data attributes, and thus,
the accuracy of filling in missing values is higher. In addi-
tion, the LR method is based on the least-squares method
to solve the parameters of linear equations and find the
global minimum by directly deriving the objective function
in a noniterative way; in this way, the determination of
model parameters is to some extent affected by the quality
of prefilling, which is often coarse. Although the SONN+IL
method also introduces a prefill link, the missing values
participate as system-level variables during neural network
training, and their fill values are adjusted in real time accord-

ing to the model output during iteration, gradually weaken-
ing the influence of prefill on model parameter learning.

The mean absolute percentage error MAPE between the
missing value filling values and the true values of the three
methods is calculated, and this error is used as an evaluation
metric to measure the effectiveness of the three methods in
modelling incomplete data attributes and missing value fill-
ing. Five incomplete datasets were randomly generated for
each complete dataset at each missing rate, and the average
of these five-filling error MAPEs was taken as the final
experimental result. The experimental results of the three
methods on the five datasets are shown in Figure 8.

With the rapid development of web technologies and porta-
ble mobile devices, a large amount of image data is added to the
Internet every day, and how tomanage these images quickly has
become a pressing problem. Traditional image processing tasks
(e.g., image classification) can be performed using unsupervised
or supervised algorithms. In general, supervised learning algo-
rithms can achieve better performance than unsupervised
learning algorithms; however, supervised learning algorithms
require extensive pixel-level annotation of images, which is very
impractical in large-scale image applications. This is very unre-
alistic in large-scale image applications. The image semantic
modelling task is dedicated to allowing the machine to “under-
stand” the meaningful objects contained in the image, such as
people, animals, and other objects. The task of image semantic
modelling is dedicated tomaking themachine “read” themean-
ingful objects contained in the image, such as people, animals,
and other objects. In the face of massive image data, image
semantic modelling can provide solutions for tasks such as
image classification, recognition, and retrieval. Image feature
extraction is the basis of image modelling. Early image model-
ling algorithms based on the underlying visual features of
images do not reflect well the human visual perception of
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Figure 7: Filling results for single output subnetwork model and linear regression model.
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images. Later, attribute learning-based algorithms came into
being. Attributes can be understood as semantic descriptions
of image contents, such as object feature descriptions and object
name descriptions. However, attribute learning still requires a
lot of manual annotation, and many annotation effects still
depend on the performance of many external detectors. Also,
the selection of appropriate attributes depends on the experi-
ence of the engineer.

5. Conclusion

A single-stage multitarget detection and recognition model
based on deep learning is proposed. The model uses a com-
monly used large-scale convolutional neural network with
good migration learning capability as the backbone network,
and first generates output feature maps of different scales at
different stages of the backbone network, and to fuse the
detection information on the feature maps of different scales,
the output feature maps with strong semantic information at
the higher levels are fused with the output feature maps at

the bottom levels by transposed convolution to effectively
learn the hierarchical structural features of the images. Then,
inspired by human visual perceptual fields, a module is con-
structed to fuse different visual perceptual fields, which fuses
output feature maps with different perceptual field informa-
tion by using convolution kernels and null convolution at
different scales and introduces crosslayer connectivity to
alleviate the gradient vanishing problem of the model, by
introducing two parameters in the category loss function
from category imbalance and category probability. By intro-
ducing two parameters in the category loss function to
weight the model loss function in terms of category imbal-
ance and category probability, respectively, the accuracy of
target detection is better improved. Experimental results on
several datasets demonstrate the effectiveness of the pro-
posed model, which achieves a better trade-off between
detection accuracy and operation speed than classical target
detection networks such as two-stage and single-stage. Then,
the bilinear difference-based pooling of regions of interest is
used to generate fixed-size feature maps for subsequent
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inputs, and a target detection and classification module, a
target instance segmentation module, and a human pose
estimation module are constructed; a joint multitask deep
learning model is constructed based on the above-proposed
modules, and model learning is performed by supervised
fine-tuning. Experiments on challenging image datasets
and generalized datasets demonstrate that the proposed
model can achieve comparable or even better performance
on multiple images understanding tasks compared to
single-task models.
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