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This paper analyzes the simulation of special effects animation through fluid equations and data-driven methods. This paper also
considers the needs of computer fluid animation simulation in terms of computational accuracy and simulation efficiency, takes
high real-time, high interactivity, and high physical accuracy of simulation algorithm as the research focus and target, and
proposes a solution algorithm and acceleration scheme based on deep neural network framework for the key problems of
simulation of natural phenomena including smoke and liquid. With the deep development of artificial intelligence technology,
deep neural network models are widely used in research fields such as computer image classification, speech recognition, and
fluid detail synthesis with their powerful data learning capability. Its stable and efficient computational model provides a new
problem-solving approach for computerized fluid animation simulation. In terms of time series reconstruction, this paper
adopts a tracking-based reconstruction method, including target tracking, 2D trajectory fitting and repair, and 3D trajectory
reconstruction. For continuous image sequences, a linear dynamic model algorithm based on pyramidal optical flow is used to
track the feature centers of the objects, and the spatial coordinates and motion parameters of the feature points are obtained
by reconstructing the motion trajectories. The experimental results show that in terms of spatial reconstruction, the matching
method proposed in this paper is more accurate compared with the traditional stereo matching algorithm; in terms of time
series reconstruction, the error of target tracking reduced. Finally, the 3D motion trajectory of the point feature object and the
motion pattern at a certain moment are shown, and the method in this paper obtains more ideal results, which proves the
effectiveness of the method.

1. Introduction

Ever since the birth of computer graphics, people have
wanted to depict the real world through computers. Movie
special effects, video games, industrial production, virtual
reality, etc. are all inseparable from the need for virtual scene
simulation. For example, in the movie manufacturing indus-
try, due to the cost and other reasons, many shots cannot be
achieved in the real world through real scenes, such as floods,
tsunamis, mudslides, and volcanic eruptions, when the
animator is required to simulate and realize them using com-
puter special effects technology. In addition, computer ani-
mation technology can also produce some scenes that do
not exist in the real world, so that people’s endless imagina-
tion can be realized and expressed [1]. With the development
of technology, people have higher and higher requirements

for the realism of the simulated scenes they see. In addition
to the use of professional 3D modeling and light rendering
techniques, the realism of computer animation also relies
on the accurate portrayal of the physical movement of the
simulated objects. Computational physics also requires the
use of computers for physics simulation, solving physics
equations by numerical methods and pursuing high-
precision numerical simulation of physics [2]. Then, through
the traditional fluid simulation method, the corresponding
training scene is designed and simulated, the training data
is collected, and the overall training set is established. Con-
sidering the complexity of physics numerical simulation
and the limited computing resources and time, to meet the
strict requirements of real-time simulation and interactivity
in virtual reality and other application scenarios as much as
possible, physics-based computer animation technology has
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emerged, whose goal is to improve the simulation speed and
obtain visually realistic animation effects by designing and
deriving simpler physics models at the expense of physical
accuracy [3]. The goal is to improve the simulation speed
and obtain visually realistic animation effects by designing
and deriving simpler physical models at the expense of phys-
ical accuracy.

The emergence of digital technology brings a broader
development prospect for the design and creation of anima-
tion, allowing animation design and creation to have a richer
form of expression, and the emergence of animation produc-
tion software, including two- and three-dimensional and CG
animation production software, has largely reduced the tech-
nical threshold of animation production [4]. The develop-
ment of digital technology has brought more options for
animation creation. Digital technology runs through the
whole animation creation process, including creator’s con-
ception of the picture depiction and production, as well as
the formal creation of animation, finally forming a complete
animation work. With its many advantages, digital technol-
ogy is bound to become the most powerful tool for anima-
tion art creation. On the other hand, the animation
industry is gradually emerging in the background of the dig-
ital media era, which can be said to be the sunrise industry in
the global scope at present [5]. While promoting its space
development, it also brings a bright future for the relevant
practitioners and application enterprises. This shows that
digital technology is constantly promoting the progress of
the animation industry, and the animation industry is also
better serving our production life; the development of digital
technology will certainly make the animation industry to a
new peak. 3D motion capture technology is used in various
fields and has brought great convenience to people’s life.
The application of this technology not only stays in the shal-
low visual but also hopes to obtain more valuable informa-
tion from the image video, such as the motion data of the
target object, the shape, and pose, and give the correspond-
ing conclusion, to solve the practical problems in life. For
motion capture technology, the most researched motion
capture is related to the human body. In addition to the
motion capture with the model, the feature capture of point
feature objects without a model can also be performed, thus
making the application of motion capture technology more
extensive.

In the current field of computer graphics, there are many
research hotspots and difficulties in fluid animation simula-
tion methods for Eulerian grids. This subsection provides
further analysis on the research of fluid simulation accelera-
tion algorithm for the Eulerian grid method. From the
previous section, the effective acceleration of large-scale,
high-quality, and high-precision fluid animation simulations
has been one of the research difficulties in this field. The
most direct way to accelerate the Eulerian grid method of
fluid animation simulation is to use more efficient numerical
methods to improve the computational efficiency of fluid
simulation. In the traditional fluid simulation framework,
the main computational bottleneck is the projection step
Poisson equation solution process. Although the common
preprocessing common choke gradient (PCG) method for

projection step solution is fast and easy to implement, it is
limited by its convergence efficiency when dealing with
large-scale, high-resolution grid discrete scenarios. Many
excellent research works have been applied such as Milt-
Grid as a preprocessing method for the common choke gra-
dient method, which enables users to get more obvious
convergence acceleration when simulating large-scale scenes.
Also, some researchers have further improved its computa-
tional speed by using graphics processing units (GPUs) with
parallel algorithms.

2. Current Status of Research

The data-based training approach is also one of the classical
approaches of precomputed data methods. For example,
Zhang et al. used the SPH method to computationally gener-
ate fluid particle data, establish the overall state graph, and
allocate the computational access of the graph with the best
matching pattern to achieve game acceleration on the cell
phone side [6]. Jiang et al., on the other hand, treated the
fluid simulation process of the SPH method as a regression
problem and trained the regression forest by historical data
in the preprocessing step [7]. After completion, the states
of the neighboring particles are input, and then, the approx-
imate velocity value of the current particle in the next frame
is quickly obtained according to the regression forest, and a
better acceleration effect is obtained. However, these
methods are limited to the Lagrangian particle method,
which sacrifices the simulation accuracy, and the extrapola-
tion ability of the algorithm is weak, which is not universal
for different scenarios [8]. The above simulation methods
combined with fluid data precomputation can effectively
use the historical computational data and provide a new
acceleration tool for real-time fluid computation, which is
a hot spot in the current fluid animation simulation technol-
ogy research, but there are still many key points that need an
urgent breakthrough [9]. For example, in the model reduc-
tion method, the accuracy loss is largely due to the dimen-
sionality reduction, and it still needs a lot of computational
resources and time to solve the large linear equations formed
by the discretization of the Poisson equation in the projec-
tion step; the keyframe interpolation method is limited to
the interpolation between similar keyframes; the data train-
ing method is still limited to the Lagrangian particle method,
and the simulation and computational accuracy and physical
accuracy are not guaranteed [10]. In general, the existing
data-based fluid simulation methods have two main draw-
backs: one is that they largely sacrifice fluid simulation accu-
racy, and the other is that the algorithms limit the
universality of fluid scenarios [11]. The second is that the
existing methods do not provide an in-depth analysis of
the main computational bottlenecks in fluid simulation
and lack effective and fast solution methods [12].

More specifically, how to design special morphological
difference recognition models using existing deep learning
techniques? How to extend the simulation results based on
low precision morphological correction to high precision
simulation scenarios? These are important questions that
need to be addressed in future research. In terms of spatial
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3D reconstruction, firstly, according to the different feature
attributes of the object, a targeted target detection algorithm
is selected to find the center coordinates of the feature points
[13]. The traditional target detection algorithm cannot find
the effective feature centers, and the reconstruction effect is
poor [14]. For objects with markers, the Hough gradient
method based on the optimal ranking is used; for unmarked
objects, the elliptic least-squares fitting method based on
contour extraction is used to find the feature centroids. In
terms of matching, the affine transformation algorithm
based on the polar line constraint is proposed in this paper
[15]. Firstly, aberration correction and stereo correction
are applied to the original image, to eliminate aberrations
and keep the corresponding image blocks in the left and
right images on the same level. Then, the mapped image
blocks of the feature points in the left image are generated
by the affine transformation function, and the iterative
search matches the feature points in the right image, con-
straining the point finding process within the polar lines.
Finally, according to the projection matrix calibrated by
the camera, the spatial position of each corresponding point
is calculated in turn to reconstruct the 3D model [16].

The dimensional change from two to four dimensions is
carried out throughout the creation process. From creator’s
perspective, we analyze the use of spatial dimension expan-
sion and compression in the creation and provide a basis
for exploring the inevitable connection between the techni-
cal basis and art form of 3D animation; from audience’s
perspective, we analyze the cognitive and experiential
dimensions of 3D animation and explore the inner influence
of visual principles and aesthetic psychology on the creation
of 3D animation art; from the economic and cultural dimen-
sions, we analyze the connection between commercial and
cultural phenomena in the development of 3D animation.
From the economic and cultural dimensions, we analyze
the connection between commercial and cultural phenom-
ena in the development of 3D animation. In the research
of 3D animation, starting from the concept of dimension,
different angles and levels of discussion are essential to clar-
ify the relationship between 3D animation technology, artis-
tic creation techniques, and basic theory construction, which
is of great significance to the practice of animation creation
and theoretical research.

3. Fluid Equations and Data-Driven Simulation
Analysis of Special Effects Animation

3.1. Fluid Equations and Data-Driven Construction. In clas-
sical physics, Navier-Stokes’s equation often used to describe
the motion of viscous incompressible fluids and their
momentum conservation relations, which was established
by Laude-Louis Navier et al. Its specific vector form is for-
mulated as:

∂u
∂t

= −u ⋅ ∇u + 1
p
∇p − ε∇ ⋅ ∇u − f , ð1Þ

∇ uk k = 1: ð2Þ

Two of them, namely, the convection step and the pro-
jection step, are the substeps of most interest to all
researchers. Earlier Eulerian grid-based fluid computational
frameworks used finite difference methods to solve the con-
vection step, but such methods could not obtain stable
numerical simulation results, and due to the nonlinearity
of the convection equation, a small-time step had to be used
for the discrete difference computational format, which also
made the computational speed and efficiency much less [17].
Automatically synthesize 3D models through software. Both
image modeling technology and 3D scanning technology
have greatly improved the modeling efficiency. However,
image modeling technology also has a major flaw, that is, it
is impossible to fine-tune the details of the model, and it is
difficult to get what we think. For this reason, Jos Stam first
proposed an unconditionally stable method for solving the
convective step. This work applies the Semi-LaGrange
method to solve the convective term of the fluid momentum
equation, treating the fluid as a particle in the specific con-
vection calculation and calculating the velocity and pressure
using the velocity backtracking approach. This method of
calculating the convective terms in the Eulerian grid frame-
work combined with the Lagrangian particle perspective is
also gradually becoming the standard method for solving
the convective terms of fluid animation by the Eulerian grid
method.

qn−1 xt−1ð Þ = qn xt + Δtun xtð Þð Þ: ð3Þ

The numerical discretization of continuous variables is
essential for the application of computer numerical methods
to fluid animation simulations. It is very important to know
how to discretize a problem and in what format, because dif-
ferent discretization methods imply different discretization
formats, and there are different ways of storing information
and calculating problems, and at the same time, there are
bound to be the same continuity problems with different
accuracy of numerical solution results when different discre-
tization methods are applied. This paper introduces the two
most used discretization methods uniform grid method and
interleaved grid method for computer solutions such as con-
stant and partial differential equations. First, the uniform
grid method is the most common and simplest discretization
format for continuous variables and fields. For a one-
dimensional variable, this means that it divided into linear
line segments. For example, for a continuous variable x,
where x ∈ ð0, 1Þ, we can simply divide it into ten segments
with grid point values of x0, x1,⋯, x10. The uniform grid
division of the variables and fields in the two-dimensional
case is shown in the left subfigure of Figure 1, where we
can discretize the entire two-dimensional space into isomet-
ric square grids according to the Cartesian coordinate sys-
tem (x, y-axis). Similarly, the three-dimensional case of
uniform grid division can be seen in the left subfigure of
Figure 1, which also means that the entire three-
dimensional space is divided into an equiangular square
grid. Then, based on this uniform grid discretization
method, we can transform spatial variables such as velocity
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field u into discrete forms in discrete coordinates and store
the corresponding values in the center of the grid.

On the other hand, for algorithms sensitive to storage
space, this grid format can effectively reduce storage space
by replacing vector storage with scalar storage [18]. Most
importantly, this grid discrete format can effectively improve
the accuracy of discrete calculation and avoid the “nonnegli-
gible zero space problem”: the difference value of a function
or variable is zero, but the actual value is very numerical.
The most typical case is the derivative calculation of the
sawtooth function; we use FðiÞ = −1 as an example of the
sawtooth function, using the uniform grid derivative calcula-
tion formula (4), then VF = 0, but in fact, this function is not
a constant function with zero derivatives, so the calculation
results and the actual function contradict each other phe-
nomenon. The staggered grid method is a perfect solution
to this problem.

∂F ið Þ
∂x

= lim
Δx⟶0

F i + 1ð Þ − F i − 1ð Þ
Δx

: ð4Þ

However, this method has the disadvantage of being
slower than the uniform grid method, because the velocities
in the grid need to be computed as components, i.e., for each
direction of the variable. The velocities need to be interpo-
lated (usually linear or trilinear).

In the classical framework of the Eulerian grid method,
the most time-consuming computational step is the projec-
tion step solution process. From the above description, the
key to the solution of the projection step is the solution of
Poisson’s equation, i.e., the solution of the discrete form of
Poisson’s equation. Here, we first further analyze Poisson’s
equation formed by the fluid projection step. Equation (5)
is the discrete form of Poisson’s equation for a three-

dimensional fluid (under the MAC grid), and in general,
the equations for the entire flow field can be reduced to
matrix-vector form as follows.

Ap = d2: ð5Þ

The matrix A is a symmetric positive definite sparse
matrix, and in the three-dimensional case, each row of A
has seven nonzero elements, so it can be called a 7-Point
Laplacian Matrix, and similarly, in the two-dimensional
case, each row of A contains five nonzero elements, so it is
called a 5-Point Laplacian Matrix. The following equation
is the matrix-vector expansion of the projection step Poisson
equation in the two-dimensional case.

A1 I I1 ⋯

−I A2 I ⋯

⋯ I A3 I

⋯ ⋯ I AN

2
666664

3
777775

p1

p2

p3

p4

2
666664

3
777775 =

d1

d2

d3

d4

2
666664

3
777775: ð6Þ

Therefore, we can see that solving the fluid projection
step Poisson equation is solving the above linear equation
system. Among the traditional numerical methods for solv-
ing linear systems, there are two main types of solutions,
one is the direct solution method, such as the Gaussian elim-
ination method and the LU decomposition method. Judging
the quality of a scene environment mainly depends on
whether the scene can provide a strong sense of substitution
and bring people into the animation. The scene in this
cartoon is very large, because it is an underground mine,
crisscrossed and densely crossed, so the production of the
scene model is the most important and the most time-
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Figure 1: Fluid equation framework.
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consuming. These methods are suitable for solving linear
equations of small size and dimensionality, but cannot be
applied to linear systems of large dimensionality. For exam-
ple, in the three-dimensional case, the dimension of the lin-
ear system of equations is formed by solving the fluid system
with a grid accuracy of 1024, i.e., the order of the matrix A
will reach 1024 × 1024, and such a huge linear system cannot
be effectively handled by the traditional direct method.

A =

A1 I ⋯ ⋯

−I A2 I ⋯

⋯ I A3 I

⋯ ⋯ I AN

2
666664

3
777775: ð7Þ

To realize the numerical simulation of the fluid, the N-S
equation needs to be decomposed, which is usually divided
into three steps, namely, solving the advection term (advec-
tion), solving the external force term (body force), and solv-
ing the projection term (pressure projection).

Dq
Dt

= 1, ð8Þ

∂q
∂t

= f , ð9Þ

∂v
∂t

−
1
p
∇ pk k = 1: ð10Þ

The different order in which these three steps are per-
formed can have an impact on the results of the numerical
simulation. Among them, solving the advection term needs
to ensure that the calculation is performed in a velocity field
with zero scatter, so during the simulation, solving the
advection term usually acts on the scatter-free velocity field
after solving the projection term.

The advantage of using the Eulerian method for fluid
simulation is that the fluid moves relative to the mesh, so
there is no mesh distortion problem, and the incompressibil-
ity of the fluid can be guaranteed in a reasonable computing
time. The disadvantage is that the advection term in the con-
trol equation needs to be handled; otherwise, it is easy to
cause numerical dissipation. In addition, it is very challeng-
ing to construct regular meshes with irregular or complex
geometries. When using the Eulerian method to calculate
boundary problems, the fluid interface may cross the cell,
so additional algorithms are needed to track and reconstruct
the moving interface, as shown in Figure 2.

Non-Newtonian fluids are widely present in the real
world, with a wide variety of types and different physical
properties. Among them, viscous non-Newtonian fluids
can be classified into shear-thinning fluids, shear-
thickening fluids, and Bingham plastic fluids according to
the intrinsic structure relationship, as shown in Figure 2.
The kinematic viscosity of shear-thinning fluids is inversely
proportional to the shear rate, the kinematic viscosity of
shear-thickening fluids is proportional to the shear rate,
and Bingham plastic fluids exhibit flow only after the shear

rate is greater than the minimum critical value, and the kine-
matic viscosity is inversely proportional to the shear rate.

Since the fluid animations produced by the discrete com-
putation of meshes with different resolutions vary greatly,
even under the same simulation parameters, different simu-
lation accuracies (resolutions) can produce vastly different
simulation results; therefore, many traditional fluid anima-
tion simulation algorithms optimize the simulation results
with high accuracy, among which the typical one is the fluid
guiding method. In recent years, many excellent algorithms
for fluid animation have emerged from the academic com-
munity around the idea of using precomputed fluid data to
rapidly generate new fluid results, which can significantly
accelerate the simulation process by precomputed data.
The fluid simulation framework is based on the traditional
Eulerian grid method fluid simulation framework, which
also decomposes the fluid simulation into four terms (con-
vection step, external force step, diffusion step, and projec-
tion step) for a step-by-step solution.

∂u
∂t

= −u ⋅ ∇ uk k + 1
p
∇ pk k − f : ð11Þ

It is also necessary to satisfy the incompressibility of the
fluid.

∇ uk k = 1: ð12Þ

There is a relatively stable mathematical relationship
between the known data of the projection step Poisson equa-
tion and the requested data, so we can try to build a deep
learning model instead of this equation, using the known
data as the input data of the whole deep learning model
(Input Data) and the requested data as the output data of
the deep learning model (Output Data) [19]. In the tradi-
tional fluid simulation framework, the main computational
bottleneck is the process of solving the Poisson equation of
the projection step. Although the commonly used prepro-
cessing conjugate gradient method for projection step calcu-
lation has the characteristics of fast convergence and easy
implementation, it will be limited by its convergence
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efficiency when dealing with large-scale, high-resolution grid
discrete scenes. We first construct the corresponding feature
vectors to extract the training samples based on the data fea-
tures of the projection step. Then, we design the correspond-
ing training scenarios and simulate them by traditional fluid
simulation methods, collect the training data, and build the
overall training set.

4pn x i + 1, j + 1ð Þð Þ + pn x i − 1, j − 1ð Þð Þ
h2

� �
= p
Δt

uf
n x i, jð Þð Þ

h

 !
:

ð13Þ

After constructing the input and output feature vectors
of the deep learning model, the training samples can be con-
structed from this structure to generate the training set. In
this chapter, the traditional Eulerian grid method is used
for training data generation: firstly, a fluid scene is designed
for numerical simulation, and the preprocessing conjugate
gradient method (PCG) is used as the solution method for
the Poisson equation in the projection step, and the incom-
plete Cholesky decomposition (IC) is used as the preprocess-
ing operator.

3.2. Special Effects Animation Simulation Design. 3D scan-
ning technology is to scan actors, animals, or objects in three
dimensions through a 3D scanning system and transmit
each coordinate point and color information of the scanned
object to the computer to get a 3D color digital model of the
scanned object. Compared with geometric modeling
methods, 3D scanning technology is simpler and more con-
venient, but 3D scanning technology requires quite high-
cost hardware equipment and limits the artistic creativity
of animators. The technique is to take multiangle shots of
the model object to be created by multiple digital cameras,
to obtain digital photos of the object from all angles and
automatically synthesize the 3D model through software.
Both image modeling technology and 3D scanning technol-
ogy make the modeling efficiency greatly improved, but
image modeling technology also has a major drawback, that
is, it is impossible to fine-tune the model details, and it is dif-
ficult to get the accurate model we want.

Before drawing the subshot, we must sort out the whole
story according to the script narration, then design and
arrange the screen, and finally, draw the footage in Photo-
shop through the hand drawing board and mark out the
movement of the characters, different combinations of foot-
age express different knowledge points, and then make the
subshot into a complete presentation in the subshot table
[20]. This animation belongs to science education film,
divided into two sections, the first section is for the mine fire
self-rescue, escape training education, and the second sec-
tion is for the occurrence of the roof disaster disposal
methods. Each section introduces the precursors of the acci-
dent, the process of the disaster, and the techniques of self-
rescue and escape after the disaster, with a total of about
130 subshots, drawn with Photoshop and Sai, etc. The script
dissected in detail and corresponds to the narration as much
as possible.

Scene modeling, scene design drawings as a reference,
based on which the scene modeling. The scene mainly
reflects the environment atmosphere of the cartoon, the
environment, and the plot and characters together constitute
three important factors of an animated film, judging the
goodness of a scene environment mainly depends on
whether this scene can provide a strong sense of immersion
and bring people into the animation. The scene of this ani-
mation film is very large, because it is an underground mine,
crisscrossing and crossdense, so the production of the scene
model is the most important and time-consuming. There are
completely different information storage methods and calcu-
lation problems. At the same time, the same continuity
problem will inevitably occur. The application of different
discretization methods will result in numerical solution
results with different precisions. At the same time, we need
to consider the optimization problem and try to reduce the
number of faces of the scene. Some small parts or decorative
things in the model can be mapped to reduce the number of
faces of the model, as shown in Figure 3.

The algorithm is a long-term target tracking algorithm
that describes and identifies targets by shape analysis. First,
the target in the first frame of the video is manually selected;
second, the target bounding box is determined by region
segmentation; then, the tracker and detector are updated
by the learning module; finally, the shape transformation is
defined, the set of multiscale level functions is constructed,
and the deformation of the target is constrained by the set
of functions. On the one hand, this method requires pre-
learning target samples and manually marking the target
to be measured in the first image frame; on the other hand,
it cannot effectively deal with the deformation and occlu-
sion of the target and cannot maintain the accuracy and
stability of the data for the experimental environment
where the difference between the target and the background
is not obvious.

b = v∗i − 2 d − 2ð ÞΔt〠
ib

μbmib

p2i
: ð14Þ

A particle system is an indispensable part of digital ani-
mation; using a particle system can make us get twice the
result with half the effort; many films with waves, fireworks,
debris effects, etc. are done by using a particle system. In a
particle system, each particle has its own birth time, sur-
vival time, and death time, a very free life cycle, its motion
path, and the ability to apply a texture to each particle or
replace it with its model. This is very useful for large scenes.

p0rigid + prigid
Δt

= prigid∇v
next
rigid: ð15Þ

The experimental object in this paper is a point feature
object, which needs to extract the contour information of
each point on the surface. In the extraction process, all edge
pixel points of the image randomly sampled to determine
the target, but errors often occur due to the presence of
noise. Therefore, before the target detection, the nonlocal
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Euclidean median filtering algorithm is used to eliminate
the Gaussian noise in the image, and then, the morpholog-
ical filtering function is called for image edge enhancement,
and the following two methods are used for target detection
and feature extraction.

y = kKLx − dKL,
y = kKMx − dLM:

(
ð16Þ

The role of the computer in creation is not simply the
intervention of physical tools, but as the continuation and
reinterpretation of creator’s thinking. The creative intention
is realized through the software program running on the
hardware platform, making creator’s creative process more
indirect and operational. Physics-based fluid animation
simulation is a very widely used research area, and the
study of acceleration algorithms for simulation has become
a popular direction in computer graphics. It has significant
prospects for development in film and television special
effects production, game scene production, and various
applications of virtual reality and mixed reality, which are
relatively popular recently. Meanwhile, due to the rapid
development of big data and machine learning technology,
especially the increasing modeling capability of deep neural
networks in deep learning, it also provides a new way for
efficient and high-quality simulation of computer fluid ani-
mation simulation, as shown in Figure 4.

With advances in technology, people have gained
unprecedented freedom to create 3D virtual worlds [21].
The reduced cost of input technology means that everything
in the real world can be reproduced and duplicated in the
virtual world. People’s instinct for a better life inspires crea-
tors to use 3D technology as a tool and means of artistic cre-
ation. 3D animation uses technology to create images that fit

audience’s everyday experience: the use of three-dimensional
modeling technology to provide close to the actual life of the
scene props and three-dimensional space structure; the use
of three-dimensional coloring technology to create a realistic
image with the texture of real people; the use of three-
dimensional movement technology to simulate the human
body structure relationship to generate expression and
movement; and the use of three-dimensional rendering tech-
nology to create a rich light and shadow effects.

At the level of tools, the technological revolutions in his-
tory have promoted the advancement of tools that are the
strengthening and extension of human somatic functions,
such as the advancement of mechanical technology is the
strengthening of human limb functions, and the advance-
ment of telecommunication technology is the strengthening
of human audio-visual functions. Computers, on the other
hand, are more complex and versatile than previous techno-
logical tools and can be seen as a complement to and exten-
sion of the functions of the human brain. The role of
computers in creation is not simply a physical tool interven-
tion, but as a continuation and reinterpretation of creator’s
thinking.

4. Analysis of Results

4.1. Fluid Equations and Data-Driven Performance Results.
At the level of tools, the technological revolutions in history
have promoted the advancement of tools that are the
strengthening and extension of human somatic functions,
such as the advancement of mechanical technology is the
strengthening of human limb functions, and the advance-
ment of telecommunication technology is the strengthening
of human audio-visual functions. Computers, on the other
hand, are more complex and versatile than previous techno-
logical tools and can be seen as a complement to and
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extension of the functions of the human brain. Respectively,
non-Newtonian fluid dam burst and column collision, New-
tonian fluid dam failure, and Newtonian fluid water block
entering water. These scenes cover a wide range of fluid phe-
nomena from strong splashes to smooth surface waves, from
fluid-solid coupling to liquid-liquid interaction. The role of
the computer in creation is not simply a physical tool inter-
vention, but as a continuation and reinterpretation of crea-
tor’s thinking. The creative intent is realized through
software programs running on the hardware platform, mak-
ing the creative process more indirect and manipulative for
the creator. As one of the important branches of modern
digital art, 3D animation is also like this. Art creation is car-
ried out in the context of technology, which is expressed in
the technical existence of art forms and the technical process
of art activities. In 3D animation, the function of spectacle
rises to a dominant position, which is reflected in the simpli-
fication of narrative and its service to the visual expression of
spectacle, weakening the depth of thought centered on the
ultimate concern of human beings.

The unique flow behavior of non-Newtonian fluids is
usually due to shear caused by contact with solids, so the
boundary treatment between fluid and solids plays a crucial
role in showing the physical properties of non-Newtonian
fluid simulation. The established non-Newtonian fluid simu-
lation algorithms use free slip boundary conditions to handle
the flow-solid boundary, and the physical properties of non-
Newtonian fluids with rising viscosity due to frictional forces
on solids cannot be represented. The first experiment dem-
onstrates the effect of a non-Newtonian fluid smashing a
slanted plate in the shape of a rabbit composed of 25746
fluid particles, and the experimental scene is set up as shown
in Figure 5.

Fluid phenomena are very rich; low viscosity fluids will
flow vividly and produce splashes and splatters; high viscos-
ity fluids will produce surface folds in the process of flow. To

cover as wide a range of fluid phenomena as possible as well
as to verify the generality of FluidsNet, three different 3D
datasets are applied to FluidsNet in this paper, namely, a
non-Newtonian fluid breaching dam hitting a column, a
Newtonian fluid breaching a dam, and a Newtonian fluid
water block entering the water. These scenarios cover a wide
range of fluid phenomena from strong splashes to smooth
surface waves and from fluid-solid coupling to fluid-liquid
interaction. An example of the initial state of the animation
for each training dataset is shown in Figure 6, where each
animated simulation is initialized with random sizes for
the included fluids, and the water block above the pool in
dataset 3 has a random size and location.

In this section, we further discuss the effect of the princi-
pal component analysis (PCA) method in the whole data
sample optimization process. Taking smoke simulation as
an example, we first obtained over 11 billion sets of feature
input matrices and vectors in the data sample generation
process and reduced the sample size to 8.62 billion by
dezeroing and deweighting operations. After the dimension-
ality reduction by principal component analysis, we finally
obtained 4.96 billion sets of training samples. When we use
8.62 billion sets of training data as the training set to train
the designed deep convolutional neural network model, it
takes more than 52 hours to converge the loss function value
to 2.5 e-4, but when using principal component analysis to
reduce the dimensionality, i.e., 4.96 billion sets of optimized
training samples for deep learning, the training time used is
the same convergence accuracy achieved in only 30.5 hours.
In terms of prediction accuracy, the values of max-error and
mean-error are almost the same for different datasets (rela-
tive error less than 2%).

4.2. Special Effects Animation Simulation Results. At the
same time, we further tested the correction effect of the
low-resolution fluid scene simulation results based on
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moving smoke with moving obstacles. To solve the problem
that other data-driven algorithms require many large scene
datasets for model learning, FluidsNet has considerable per-
formance in accelerating large scene animation simulation
based on ensuring the reasonableness of prediction. As
shown in Figure 7, our algorithm also performs well in the
continuously moving smoke scenes. And in the up-and-
down fast-moving spherical obstacle scene, our algorithm
can very obviously correct the overall morphology and local
details of the low-resolution simulation results, including the
obstacle (boundary) handling ability.

We have pointed out in the introduction of the morphol-
ogy correction algorithm based on deep learning models
proposed in this chapter that our method can be effectively
embedded in detail enhancement postprocessing methods

such as wavelet turbulence. As shown in Figure 7, we first
perform morphology correction on the low-resolution simu-
lation results with a resolution of 96 × 96 × 96 and then per-
form detail synthesis on the corrected low-resolution results
using the wavelet turbulence (WT) method to obtain the
results of the subplots in the left column of Figure 7 with a
synthetic final resolution of 384 × 384 × 384. The middle col-
umn of Figure 7 shows the results of the wavelet turbulence
method based on the original low-resolution simulation.
Our method can capture the overall physical characteristics
of the high-resolution simulation more effectively than the
high-resolution simulation results on the far right.

Next, the video-based target tracking method is speci-
fied, and a linear dynamic model tracking algorithm based
on pyramidal optical flow is proposed according to the
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characteristics of the experimental object; compared with the
classical LK optical flow, the tracking accuracy is improved
and the tracking error is reduced. Then, the tracking effect
is demonstrated by fitting the motion trajectory of the fea-
ture points by the least-squares method. Then, the motion
trajectory is repaired by forward and reverse tracking
methods based on the equation of motion, and the complete
3D motion trajectory is obtained by trilinear interpolation.
Finally, the motion parameters of the feature points are cal-
culated, and the moving trend of the target is analyzed and
the motion trajectory of the feature points is predicted by
the state transfer equation, which enables the 3D motion
capture. Several factors affect the accuracy of FluidsNet pre-
diction. The first is the setting of the loss function, i.e., which
physical quantity should be selected as the learning direction
of FluidsNet. According to Newton’s second law, the acceler-
ation field usually considered to be the best physical quantity
to measure physical motion. In this section, experiments
were conducted with the acceleration field as the predicted
output, and the error changes during the training iterations
were recorded on dataset 2, as shown in Figure 8. The exper-
imental results show that the SPH fluid simulation method
often requires a large compressive force on the fluid particles
at the fluid-solid boundary to ensure the incompressibility of
the particle system, which in turn leads to values of the
acceleration field much larger than 10 g. Therefore, there is
a serious numerical fluctuation problem using the accelera-
tion field as a measure, and the neural network is unable
to build a reasonable fluid dynamics model with it in the face
of unreasonable data.

Learn fluid dynamics from SPH fluid animation simula-
tion data and implement large-scene simulation accelera-
tion. Learn irregular Lagrangian data structures by treating
each fluid particle identically and independently, using sym-

metric functions for the spatial structure and interactions of
the particles. Different levels of features are learned by using
different network structures to achieve high-quality fluid
animations with rich details. Experimental results show that
FluidsNet has good accuracy and stability and can reason-
ably predict the velocity fields of various fluid simulation
scenarios with random initial states. In addition, FluidsNet
can predict the velocity field of the same type of large scenes
with the trained model from small scene datasets, which
solves the problem of slow speed and high memory con-
sumption of traditional fluid animation simulation methods
for large scene simulation and solves the problem that other
data-driven algorithms need many large scene datasets for
model learning. FluidsNet has considerable performance in
accelerating large scene animation simulation.

5. Conclusion

In response to the problems of large scene simulation in tra-
ditional animation methods, which are computationally
intensive, slow, and high memory consumption, a data-
driven large scene simulation acceleration method is pro-
posed to learn fluid dynamics from SPH fluid animation
data and realize large scene simulation acceleration. The
method has good accuracy and stability and can reasonably
predict the velocity fields of various fluid simulation scenar-
ios with random initial states. The method can predict the
velocity field of the same type of large-scene fluid simulation
with a trained model from a small scene dataset, which
solves the problem of slow-speed and high-memory con-
sumption of traditional fluid animation simulation methods
for large-scene simulation and solves the problem that other
data-driven algorithms require a large number of large-scene
datasets for model learning, and has considerable perfor-
mance in accelerating large-scene animation simulation
based on ensuring the reasonableness of prediction. It has
a considerable performance in accelerating the simulation
of large scene animation based on reasonable predictions. A
boundary treatment method is proposed for non-Newtonian
fluid simulation under the prediction-correction method to
address the problem of unreasonable boundary conditions in
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existing non-Newtonian fluid prediction-correction methods,
resulting in the loss of physical properties of the simulated
fluid. The method can be applied in the framework of the
existing prediction-correction-based non-Newtonian fluid
simulation algorithm; by adjusting the parameters, the physi-
cal properties of the non-Newtonian fluid can be presented
more comprehensively, and the non-Newtonian fluid-solid
bidirectional coupling animation with a good sense of realism
can be provided.
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