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In this article, we look at a surface associated with real-valued functions. The surface is known as a harmonic surface, and its unit
normal vector and mean curvature have been used to characterize it. We use the Bishop-Darboux frame (B-Darboux frame) in
Euclidean 3-space E* to study and explain the geometric characteristics of the harmonic evolute surfaces of tubular surfaces.
The characterizations of the harmonic evolute surface’s ¢ and ¢ parameter curves are evaluated, and then, they are compared.
Finally, an example of a tubular surface’s harmonic evolute surface is presented, along with visuals of these surfaces.

1. Introduction

Darboux frame is a differential geometric approach for eval-
uating curves and surfaces. The Frenet frame is the most
well-known frame field, although there are others, such as
the Darboux frame. There have been several instances of
frame studies of this sort, for example, see [1, 2].

The Bishop frame is a way for defining a moving frame
that is well defined despite due to the vanished of curve’s
second derivative [3]. Parallel transferring each element of
an orthogonal frame along a curve is as easy as parallel
transferring each element of the frame.

In E’, the geometrical position of the points at the
inverse distance in terms of multiplication of the mean cur-
vature from the surface is known as the harmonic evolute
surface of a tubular surface. The harmonic evolute surface
can be defined for a nonminimal surface.

Let M : Q(p, ¢) be a surface associated with real-valued
functions, Q(p,¢) and H(p,¢) which, respectively, are the
normal vector and mean curvature of . The harmonic
surface I'(p, ¢) has a parameterized description as follows:

I(p.c) =(p>c) +

Many researches on harmonic evolute surfaces have
been published, some of which may be included here (see
[4-7]). The geometric features of the harmonic evolute sur-
face of a tubular surface via B-Darboux frame have inspired
us to study the geometric characteristics of the harmonic
evolute surface of a tubular surface. As a result, the tubular
surface and the harmonic evolute surface generated from
this surface will be compared and interpreted.

2. Preliminaries

Consider the Euclidean 3-space E’. It contains the metric
as follows:

() =de? + de5 + de3, (2)

where (g, ¢,,¢&;) € E’s coordinate system.
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For a regular curve u(p) lying on surface M = Q(p, ¢), we
denote the Darboux frame on the surface by {T,P,Q},
where P=Q x T and Qs just surface’s normal [1, 8]. Then,

T(p) 0 kg(P)  ®a(P)] [ T(p)
P(P) = _Kg(p) 0 Tg(p) P(P) >
Q(p) p —K.(P)  —T4(p) 0 Q(p)

where even the geodesic curvature x,, normal curvature «,,

and relative torsion T 4 are defined as:

Tg:<P',(Q>,xn:<T',Q>,Kg:<T',P>. (4)

In matrix form, the B-Darboux frame’s variation equa-
tion {T,B,,B,} on the surface M is as shown below [1]:

T(p) 0 Glp) Gp) ][ T
Bi(p)| =|-Ci(p) 0 0 B,(p) | (5)
By(p)l, L-Cp) O 0 | [By(p)

where {, and (,, the B-Darboux curvatures, are acquired in
the following way:

i =k, sin ¢ +x, cos ¢,

(6)

{, =k, sin ¢ —x, cos §.

Also, the relation matrix given by

T(p) 10 0 T(p)
Bi(p) | =0 sing cos¢ || P(p) | (7)
B, (p) 0 —cos¢ sing | [ Q(p)

such that angle ¢ between Q and B, is acquired around
6-0u= |yt ()

for any arbitrary constant ¢,. The relation among B-Darboux’s
curvatures and Darboux’s curvatures satisfies

G+ G=rg 4. )

Let M : Q(p, ¢) be regular surface in E?, then the (s unit
normal vector Q can be written as

Qp X 0,
= P (10)
12, x O

where Q, = 00Q/0dp and Q. = 00/0s. The Gaussian curvature
K and mean H curvature were also provided by [9-11]
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_ hnhzz - h?z
919» - 9n
H= iy + 9k — 29,0,
= . ,
2(911922 ‘912)

K
(11)

where g, = ”Qpllz’ 912 = <Qp>Qc>> 9= "chlz’ hyy =(Q
Q>’ h12 = <‘ng> Q>’ and h22 = <Qcc’ Q>

pp>

3. Obtaining Tubular Surface via B-Darboux
Frame

Let u(p) be an arc-length-parameterized curve in E*. Then,
the tubular surface via the B-Darboux frame has the param-
etrization [2, 12, 13]:

Q(p,c) = u(p) + rlcos ¢ B, (p) +sincB,(p)],  (12)

where r is constant and sphere’s radius. The velocity vectors
of O along y are

Q, =[1=rAp.)|T(p),

. (13)
Q. =-rsingB,(p) +rcos¢B,(p),

where A(p, ) =x,(p) sin (¢ —¢) +x,(p) cos (p—¢). As a
result, the trying to follow are the features of (s first funda-
mental form:

911=(1_“\)2)912=0’922=r2- (14)

The ’s unit surface normal vector Q,, from the other
hand, is acquired by

Qg =~ cos¢B,(p) —sin ¢ By (p). (15)
(s second order partial diffrentials are discovered as

Q= (=1 A,)T(p) + {i (1= r A)B, (p) + {(1 = r 1)By (p),
Q= (=7 A) T (p),
Q. =-rcoscB(p) —rsingB,(p).

(16)

The coefficients of the second fundamental form are
derived using (13) as illustrated below.

hu:—/\(l—r/\),h12=0,h22=7’~ (17)

Thus, the Gaussian curvature K, and mean curvature
H,, functions are calculated as

KQ(P)C)=—ﬁ>HQ(P’C)= 2:(17% (18)

Theorem 1. The tubular surface M: Q(q, ¢) via the B-Darboux
frame described by (12) is developable iff
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tan (gb—c):—K”(p). (19)

Theorem 2. The tubular surface M: Q(0, ) via the B-Darboux
frame described by (12) is minimal iff the following equation
satisfies

1-2r[x,(p) sin (¢ —¢) +x,(p) cos (p—¢)| =0.  (20)

Corollary 3. Let M: Q(q,¢) be tubular surface via the
B-Darboux frame described by (12). The Q-parameter is then
not geodesic curves but G-parameter is geodesic curves.

Proof. Let 2 be a tubular surface defined by Equation (12),
and we get process and techniques from Equations (15)
and (16)

Qqp xQ,,#0and Qq x QO =0, (21)

where x stands for cross product. So, the proof is clear in
such scenario. O

Corollary 4. Let M: Q(o,¢) be tubular surface via the
B-Darboux frame described by (12). The ¢-parameter is not
asymptotic curves but Q-parameter is then asymptotic
curves iff

1

kg(Q) = m . (22)

Proof. If 2 is a tubular surface as defined by Equation
(12), from Equations (15) and (16), we have (QQ,QPP>
=(,;(1-rA)=0 if only and only if A =1/r or equivalently
Ky(p) =1/(rsin (¢ —c)). But (Qq, Q) =r #0, which com-
pletes the proof. O

Corollary 5. Let M: Q(, ) be tubular surface via the B-Dar-
boux frame described by (12). The Q and ¢-parameters are
then principal curves.

Proof. Let 2 be a tubular surface defined by Equation (12),
and we get process and techniques from Equations (14)
and (17), then we have

gy, =h,=0. (23)
Then, the proof is clear. O

Corollary 6. The tubular surface M: Q(Q, ) via the B-Darboux
frame described by (12) is a (KQ, HQ)-Weingarten surface.

Proof. If the Jacobi equation (K, H,) =0 occurs between
the Gaussian curvature K, and the mean curvature H, on
a surface, it is termed a Weingarten surface (see [10]).
Now, if Q be a tubular surface defined by Equation (12)
and from Equation (18), we get

3
A A
(Ka), == r(1 —Pr)t)z (Ka)e=- r(1-rd)?
(24)
(Ha)y == (Hg) = =
DT -y 21—y
It is clear that (Hy),(Kg), = (Hg) (Kq),- 0

Corollary 7. The tubular surface M: Q(, ) via the B-Darboux
frame defined by (12) is a (KQ,HQ)-linear Weingarten

surface iff

2rc+b
A= —— — 25
2(a+rb-ric) (25)

where ¢, ¢;, and c, are not all zero real numbers.

Proof. A surface Q is said to be a (K5, H,)-linear Weingarten
surface if the curvatures K, and H, of Q satisty aK, +b
Hg, = ¢, where a, b, ¢ € R (see [10]). Then, one can see that

2rc+b
A= ——— | 26
2(a+rb-ric) (26)

where a, b, and c are not all zero real numbers. O

4. Constructing the Harmonic Surface of
Tubular Surface via B-Darboux Frame

We now concentrate on the parametrization of M~
harmonic surface of M by using (12), (15), and (18). We
define M* as follows:

I'(e,6)=u(e) + p(:¢)[cos By (0) +singB,(Q)],  (27)

where p(p,¢)=—(r/(1-2rA(p,¢))). The I’s

vectors are

velocity

I,=(1=Ap)T(p) +p, cos ¢ B, (p) + p, sin ¢ B, (p),
I = [p, cos—psing|B,(p) + [p, sin G+ p cos ] B,(p).
(28)
As a result, the features of I'’s first fundamental forms

=P+ (1A% gl =p,po =P +p2 (29)

The I’s unit normal vector Q, from the other hand,
is acquired by
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Q= 1 The second fundamental form coefficients are com-
r— uted using (29) and (30) as follows:
\/p2p§,+ (P +p2) (1= 2Ap)? P &
: {ppp T(p) = (1-Ap)(p, sin ¢+ p cos ¢) B, (p) b - 1
1~
2 2 2 2 _ 2
+ (1= Ap)(p, cos ¢ — p sin c)ﬂ?bz(p)}. \/p Pt (P74 p2)(1-2p)
(30) : {(1 - Ap) [(1 = Ap)[ps(8; cos ¢ =y sing) = Ap]| - pppp]
- 2A A ,
I’s second-order partial differentials are discovered as PPe ( Po % p) }
Ipp=- [ZAP,, + App} T+ [C 1(L=Ap) +p,, cos C} B, . (1-2p) (PPP< - Pppc) - pp,(Ap),
12— >
+ [CZ(I—APHPW sin C} B,, PP+ (P2 + p2)(1-2p)
Iy =~(Ap)T+ [py cos s p, sinc|B, e, = (LAP2REple—p)] (32)
+ {ppc sin ¢ + p,, cos q} B,, \/Pzpf)+(p2 +p§)(1—)tp)2
= —p)cos¢c—2p.sin¢g|B
* [(pcc P) ) s } ' (31) Thus, the Gaussian curvature K, and mean curvature
+ [(Pcc -pP ) sin ¢ +2p, cos C} B,. H. functions are calculated as
{@-29) [(1-2p) [po(€ cos e =4, sin ) = 4] - pp,, | - pp, (240, + Ayp) |
K - {(1=2p) 202 = p(pc = p)]} - {(1 - 2p) (pppc - PPPC) - pp,,(lp)c}
[Pzpﬁ + (P +p2)(1 *AP)Z}
- [Pﬁ +(1- Ap)z] {@=2p) 202 = ppc = P)]} + [P* + %] {(1 =Ap) [(1 =Ap)[pe(&; cos ¢ = {; sinc) = Ap] - PPPP} -pp, (MPP + /\pp) } - prpc{(l -Ap) (ppp< - Pppg) - PPP(AP)C} _

32
2P0 + (02 + p2)(1-2p)’]

Theorem 8. The harmonic evolute surface M* defined by (27)
of tubular surface (12) via B-Darboux frame is neither flat
nor minimal.

Corollary 9. Let M* be harmonic evolute surface (27) of
tubular surface (12) via B-Darboux frame in E’. The @ and
G-parameters are then principal curves iff p = constant.

Proof. If and only if g}, and hy,, the coefficients of the first and
second fundamental forms, respectively, vanish, the parameter
curves of M* are lines of curvature. So, g;, =h}, =0if pisa
nonzero constant, according to (29) and (32). As a result, the
evidence is complete. O

Corollary 10. Let M* be harmonic evolute surface (27) of
tubular surface (12) via B-Darboux frame in E°. Then, the
following are satisfying.

(1) M*’s o-parameter curves not possible asymptotic curves

(33)

(2) M*’s g-parameter curves are asymptotic curves iff p
satisfies the 2nd-order differential equation

ppe 207~ p’ =0. (34)

Proof. If the normal curvature of the parameter curves is
zero everywhere, they are called asymptotic curves on the
surface. If this is the case, from (30) and (32), we have

(1) th = <Fpp> QF> = _(1 - /\P)[/\(l

+(1-2p)>#0

—Ap) +popl + p, (24
PptApp)!

which means that p-parameter curves are not asymptotic

curves.
(2) h3, = ([, Qr) =2p7 = plp,. = p)\/P* + P =0,
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iff pp . —2p? — p* = 0 which means that g-parameter curves
are asymptotic curves. ]

Corollary 11. Let M™ be harmonic evolute surface (27) of
tubular surface (12) via B-Darboux frame in E’. Then, the
following are satisfying.

(1) M*’s g-parameter curves not possible geodesic curves

(2) M*’s g-parameter curves are geodesic curves iff

p=¢; COS G+, sin g, (35)

for any real constants c; and c,.

Proof. If the acceleration vector of the parameter curve on
the surface is parallel to the normal vector of the surface,
the parameter curve is termed a geodesic curve. If that is
the case, using (30) and (32), we have

(1) QpxT,, =4, (1=Ap)* T+ p, (1= Ap)B, +[p,p,,

+(1=2p)[p, (¢, +24) + A,plIB, /4 /p2 + (1= Ap)?

750;

which means that p-parameter curves are not geodesic
curves.

(2) Qp x Ty =~[2pp + p(ps = PITI\/P? + p?-

Then, Qp xI' =0 if only and only if p (p. +p)=0.
This implies that the ¢-parameter curves are geodesic
curves if the differential equation p_+p =0 has a solution

p=c¢, COSG+c,sing. O
5. Example

Let y be a circular helix parameterized as p(p) = (cos (p/

V2),sin (p/v/2), p/+/2). Then, the curve’s Darboux frame

and curvatures x, k,, and 7, along y(p) are dictated by

() o (2) )
(o ()4 (5) = () 1 ()
- (loe() b (2) Fom ()1 ()

Now, ¢ = [* T, dt = & = 1/2dt = —p12. So, the B-Darboux
curvatures are calculated as

(37)

FIGURE 1: Tubular surface Q, due to Darboux frame.

Then, the B-Darboux frame are given as

0= 75 (-0 () ((5)1)
o= [ () o () o0 ()

+ % sin (%) [cos (£) +sin (£)].sin (%)

[ (§)-0 5)] - 75 = (25)

Jeos (§) vsin ()] 5 eos () +sm (5)]
i o ()

o ()l @ -0 O] ()

feos () rsm (5] 35 = (53)

oo §)-5m () g o (5) -0 5]

As a result and taking r = \/2, the parameterization of the
tubular surface M, over the curve y can be compiled in Dar-

boux frame as Q,(p,¢)=u(p) + r[cos ¢ P(p) + sin ¢ Q(p)]
(see Figure 1), then we have

Q,(pc) = {cos (\/%) [1 - cos ¢ + sin ¢] + % sin

: (%) [cos ¢ + sin c]],sin (%) [1 - cos ¢ +sin g

1
- — cos (L) [cos G +sin G|, —[p + cos ¢ +sing]|.

1
V2 V2 V2
(39)

The harmonic surface I', of 2, via Darboux frame
I'y(p:6) =2, (p,c) + (1/(Hg, (p,6))) Qlps ) can be given
as (see Figure 2)
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FIGURE 3: Tubular surface 2, via B-Darboux frame.

FIGURE 2: Harmonic surface I'; via Darboux frame.

= (3)-m )]
_ b sin (%) [cos ¢ — sin g], (1 + cos G + sin ¢) sin

V2
() (Eaemle ()= (3]
+ \/Li cos (\%) [cos ¢ —sin g], g - E[cosq—sinc]
. 2—cos¢—sing }
\/E(l—cosc—sinc)
(40)

FIGURE 4: Harmonic surface I', via B-Darboux frame.

From (12), the tubular surface 0, over the curve y via B Ly(p.q) = {COS ( N ) B 1
-Darboux frame can be given as (see Figure 3) 2 V2) 1+cos(c+(p/2)) —sin (¢ +(p/2))

[l () -on ()] fovee (%)

2up0= (o () [ox () on ) psmssn ()] oo (510 3]
Laexen () e () e () e ()] (3)

[ (§) - 3) e

- {cos G cos <%> - \/LZ sin ¢ sin (%)}Sm (%) . _[cos ( (;— S(:l ()‘l—)))] [COECC Slip()) )

e () vin ()] smesm (1) ()] @
V2 2

- L COS G CoS L Ccos — S B

[ o) men (R}
O )t |

Jprveos (5= 5) —sin (- 2] | o

(41)

6. Conclusion

Using (27), then the harmonic surface I', of 2, via ~ Many researchers have recently researched curves and sur-
B-Darboux frame can be given as (see Figure 4) faces using the Bishop frame, similar to how they studied
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curves and surfaces using the Frenet frame. The concept of a
B-Darboux frame was recently shown, and there is a chance
that the further studies may be conducted in the future. We
study the characterisation of tubular surfaces using the
B-Darboux frame and the harmonic surface of tubular
surfaces using the B-Darboux frame in this paper. We
provide the required and sufficient circumstances for a
tubular surface to become a developable and minimum
surface using the B-Darboux frame. Furthermore, they
demonstrate that the harmonic surface of a tubular surface
is neither a developable nor a minimal surface.
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