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Abstract

Aims/Objectives: In this review article we study the computation of the minimum polynomial
of a matrix A and how we can use it for the computation of the matrix An. We also describe
the form of the elements of the matrix A−n and we will see that it is closely related with the
computation of the Drazin generalized inverse of A. Next we study the computation of the
exponential matrix and finally we give a simple proof of the Leverrier - Faddeev algorithm for
the computation of the characteristic polynomial.
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Leverrier - Faddeev algorithm.
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1 Introduction

We are interested here for the computation of the minimum polynomial of a matrix Am×m (without
first compute the characteristic polynomial) and its applications, see the paper [1] for this matter.
Here we give a simpler proof than [1]. In particular we are interested for the computation of the
matrix An for every n ∈ Z (if is invertible) and for the computation of the exponential matrix etA,
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one can see the book of [2] for this matter. It is well known how one can compute them in the
case where the matrix A is diagonalizable but here we are interested for a general method. We will
see that the Cayley-Hamilton theorem and the notion of the generalized Vandermonde determinant
are very crucial in this direction. In order to compute the matrices An and etA we can use the
characteristic polynomial or the minimum polynomial. In the case where the minimum polynomial
is of much less degree in comparison with the characteristic then we will see that using the minimum
polynomial one can compute the desired matrices by much less computational effort.

Moreover, we will prove that if the matrix A is invertible and we have computed the matrix An

for n ∈ N then the matrix A−n can be produced directly from the elements of the matrix An. If
we denote these elements as aij(n) then we shall prove that the elements of A−n are the aij(−n).
Moreover, we will see that even in the case where the matrix is not invertible the elements aij(−1)
are well defined. So, what is the role of the matrix D that contains the elements aij(−1)? We shall
see that the matrix D is the Drazin inverse (a notion of a generalized inverse of a matrix, see for
example [3]). Therefore, one way to compute the Drazin generalized inverse of the matrix A is first
to compute the matrix An and then substitute n by −1. Of course, if the matrix A is invertible
then we arrive at the matrix A−1.

Finally, we will study the Leverrier-Faddeev algorithm (see [4]) for the computation of the characteristic
polynomial, giving a simple proof of the construction.

One can see the following books and articles that are closely related to this subject [5], [6], [7] and
[8] - [14].

2 Minimum Polynomial

In this section we will restate the definition of the minimum polynomial and some well known results
about it. By PA we denote the set of all the polynomials that vanishes by the matrix A,

PA = {all the polynomials p(k) : p(A) = 0}

Obviously PA is nonempty because it contains the characteristic polynomial δA(k) of the matrix
A. Let q(k) = kr + br−1k

r−1 + · · ·+ b0 the polynomial that belongs to PA with less degree, that is
q(A) = 0 and there is not another polynomial with less degree than q(k) that vanishes by A. We
can prove that this polynomial is unique and we call it the minimum polynomial.

Proposition 2.1. If p ∈ PA then p is divided by the minimum polynomial q(k). The minimum
polynomial q(k) is unique among the monic polynomials.

Proposition 2.2. The characteristic polynomial δ(k) of a matrix An×n and the minimum polynomial
q have the same roots. Moreover, if the characteristic polynomial has n distinct roots then δ(k) =
q(k).

Theorem 2.1. The matrix An×n is diagonalizable iff the minimum polynomial has the form

q(k) = (k − k1) · · · (k − km)

where k1, · · · , km the m ≤ n distinct eigenvalues of the matrix.

We will now describe a method in order to calculate the minimum polynomial directly, without
compute first the characteristic polynomial.
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Let a matrix An×n and δ(k) = kn + bn−1k
n−1 + · · · + b0 its characteristic polynomial. Obviously

δ(A) = 0.

Let the minimum polynomial has the following form

q(k) = kr + ar−1k
r−1 + · · ·+ a0

with r ≤ n.

Then

a0I + a1A+ · · ·+ ar−1A
r−1 = −Ar

From the above matrix equality we can construct a linear system for the unknowns a0, · · · , ar−1

and this linear system has a unique solution since the minimum polynomial is unique. What is the
matrix of this linear system? The left hand side is a matrix and each element is equal with the
corresponding element of the right hand side, i.e. with the corresponding element of the matrix
−Ar. That is we have n2 equations with r unknowns. The matrix of the above system is a matrix
Cn2×r. In order to construct this matrix we will put the elements of the identity matrix (with any
order) at the first column of C, then at the second column we will put the matrix A (with the same
order as before), and final the matrix Ar−1 at the r column of the matrix C. The row echelon form
of this matrix will have r leading ones at the first r columns, side by side. If we construct now
the augmented matrix (C|X) where X is the column that contains the matrix −Ar then the row
echelon matrix will have again r (and not r+ 1) leading ones side by side at the first r columns. If
it has r + 1 leading ones then the above system will not have a solution and that contradicts with
the fact that there exists a unique polynomial that satisfies the above matrix equality.

The system

a0I + a1A+ · · ·+ ar−1A
r−1 = −arAr

has infinitely many solutions with one free parameter. One of them is the coefficients of the minimum
polynomial. Choosing ar = 1 we get the coefficients of the minimum polynomial. Similarly the
system

a0I + a1A+ · · · ar−1A
r−1 = −arAr − ar+1A

r+1 − · · · − anAn

will have infinitely many solutions. Choosing ar = 1 and ar+1 = · · · = an = 0 we will get the
coefficients of the minimum polynomial. The r here is the number of the leading ones that are
located side by side at the first r columns and the next column does not have a leading one.

Therefore, if An×n is a given matrix then we construct the matrix Bn2×(n+1) which contains in its
columns the matrices I, A, · · · , An with any order but the same for any column. We compute the
reduced row echelon form B̂. The number r of the leading ones located at the first columns side
by side will give us the degree of the minimum polynomial. That is, in order to find the degree
of the minimum polynomial one has to find the first column that has no leading one, i.e. find the
minimum r = 1, 2, · · · such that B̂r+1,r+1 = 0. Then the degree of the minimum polynomial equals
r and we set ar = 1 and ar+1 = · · · = an = 0. Therefore the minimum polynomial will be the
following

q(k) = kr − B̂r,r+1k
r−1 − B̂r−1,r+1k

r−2 − · · · − B̂1,r+1

Example 2.2. Let the matrix

A =

 −4 2 0
−2 −1 0

0 0 1


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We will compute the minimum polynomial. The matrix B is

B =



1 −4 12 −28
0 −2 10 −34
0 0 0 0
0 2 −10 34
1 −1 −3 23
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1


and the reduced row echelon form is the following

B̂ =


1 0 0 8
0 1 0 −3
0 0 1 −4
0 0 0 0
...

...
...

...


That is the minimum polynomial is

q(k) = δ(k) = k3 + 4k2 + 3k − 8

3 The Matrix An for n ∈ Z
Let us recall first the Cayley-Hamilton theorem that is very crucial in our approach.

Theorem 3.1 (Cayley-Hamilton). For every matrix Am×m with characteristic polynomial

δA(k) = km + am−1k
m−1 + · · ·+ a0,

it holds that

δA(A) = 0.

Remark 3.1. By the fundamental theorem of algebra it is well known that the sum of the multiplicities
of the roots of a polynomial of degree m equals m. Therefore any polynomial is such that the sum
of the multiplicities is greater than m has to be the zero polynomial, i.e. all the coefficients are
zero.

Let a polynomial p(k) of degree greater than or equal m and let the matrix Am×m. If we want to
compute the matrix p(A) then we can divide p(k) by δA(k) arriving at p(k) = δA(k)π(k) + v(k) for
every k ∈ R. Therefore the polynomial λ(k) = p(k)− δA(k)π(k)− v(k) has all its coefficients equals
to zero because vanishes for all k ∈ R. So we see that p(A) = δA(A)π(A) + v(A) = v(A).

In particular, if we want to compute the n-th power of a matrix Am×m where n > m, we divide
(theoretically) the polynomial kn by the characteristic polynomial arriving at kn = δA(k)π(k)+v(k).
Thus we have to compute the coefficients of the unknown polynomial v(k). For this we can use the
eigenvalues of the matrix A which satisfy the equation kni = δA(ki)π(ki) + v(ki) = v(ki). In the
case where some eigenvalue is of multiplicity greater than one then we construct more equations by
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differentiating the equation kn = δA(k)π(k) + v(k) and then substitute the eigenvalue. We end up
by the following linear system of equations

v(i)(z1) = (kn)
(i)
k=z1

, i = 0, · · · , l1 − 1

...

v(i)(zt) = (kn)
(i)
k=zt

, i = 0, · · · , lt − 1

where by v(i) and by (kn)(i) we mean the i-th derivative of the function. This system has always
a unique solution because the determinant is a generalized Vandermonde determinant (see [15]).
To see that, one first observes that this system has at least one solution because the number of
equations equals the number of unknowns. Supposing that there exists two solutions of the system
we see that their difference satisfy the homogeneous system. Note that v(k) is a polynomial of
degree m − 1 so the sum of the multiplicity of its roots equals to m − 1. But we also see that the
same polynomial has the zi as its roots and the sum of their multiplicity are m. Therefore it has
to vanish everywhere so there is only one solution of the system.

Once we have computed the polynomial v(k), then from the relation

kn = δA(k)π(k) + v(k)

substituting A instead of k it follows that An = v(A) because by the Cayley-Hamilton theorem we
have that δA(A) = 0. If the matrix A is real then one can easily prove that the matrix v(A) = An

is real.

Remark 3.2. The following linear system

v(i)(k1) = (kn)
(i)
k=k1

, i = 0, · · · , r1 − 1

...

v(i)(kl) = (kn)
(i)
k=kl

, i = 0, · · · , rl − 1

have a unique solution (am−1(n), · · · , a0(n)) which is such that v(A) = am−1(n)Am−1+am−2(n)Am−2+
· · ·+a0(n)Im×m = An. This holds even in the case where n ≤ m. The unique solution is an(n) = 1
and ai(n) = 0 for i = 0, 1, · · · , n− 1, n+ 1, · · · ,m that is

(0, 0, · · · , 1︸︷︷︸
nth element

, 0 · · · , 0)

therefore it also holds that v(A) = An where n ≤ m.

Remark 3.3. We can use the minimum polynomial instead of the characteristic in order to compute
the nth power of the matrix. Indeed, denoting by mA(k) the minimum polynomial we can write
kn = mA(k)l(k) + v̂(k). In order to compute the polynomial v̂(k) we can use the roots of the
minimum polynomial and construct a linear system as above. This system admits also a unique
solution and therefore we have computed the matrix An which equals the matrix v̂(A). In this
approach we see that the linear system that we construct in order to compute the coefficients of the
polynomial v̂(k) has l equations when the degree of the minimum polynomial is l − 1. Comparing
with the system using the characteristic polynomial we see that the computational effort is much
less in the case where l is much less than m. Note also that we can use any polynomial that vanishes
by the matrix A in order to compute the matrix An.

Let the elements of An are aij(n). We shall prove that when A is invertible then the elements of
A−1 are the aij(−1) and generally the elements of A−n are the aij(−n).
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Theorem 3.2 (The elements of A−n). Let the matrix Am×m is invertible. If the (i, j) element
of An is aij(n) then the (i, j) element of A−n is aij(−n). In particular the elements of A−1 are the
aij(−1).

Proof. Let

δA(k) = amk
m + · · ·+ a0

the characteristic polynomial of Am×m. By the Cayley-Hamilton theorem we know that δA(A) = 0.
If the matrix A is invertible then from the equality δA(A) = 0 it follows that

A−1 = bm−1A
m−1 + · · ·+ b0Im×m, bk = −ak+1

a0
, k = 0, 1, · · · ,m− 1

We can compute the matrix An by using the Cayley-Hamilton theorem as we have described. To
do this, we consider a polynomial v(k) = bm−1A

m−1 + · · ·+ b0 and we solve the system

v(i)(k1) = (kn)
(i)
k=k1

, i = 0, · · · , r1 − 1

... (3.1)

v(i)(kl) = (kn)
(i)
k=kl

, i = 0, · · · , rl − 1

when A has eigenvalues k1, · · · , kl of multiplicity r1, · · · , rl. We will prove that if we solve the
above system for n = −1 we will get the inverse of A. This linear system has a unique solution for
every n ∈ Z because its determinant is a generalized Vandermonde determinant. In the case where
n = −1 we will see that this unique solution is for bk = −ak+1

a0
for k = 0, · · · ,m− 1.

Indeed, the first equation of this linear system is

bm−1k
m−1
1 + · · ·+ b0 =

1

k1

Substituting the bk we arrive at δA(k1) = 0 because k1 is an eigenvalue.

The second equation is

(m− 1)bm−1k
m−2
1 + · · ·+ b1 = − 1

k21

Substituting the bk = −ak+1

a0
we arrive at

(m− 1)

(
−am
a0

)
km−2
1 + · · ·+

(
−a2
a0

)
= − 1

k21

Therefore

(m− 1)amk
m−1
1 + · · ·+ a2k1 =

a0
k1

We write the left hand side in the form

mamk
m−1
1 + · · ·+ 2a2k1 + a1 − (amk

m−1
1 + am−1k

m−2
1 + · · ·+ a2k1 + a1)

The quantity mamk
m−1
1 +· · ·+2a2k1+a1 equals δ

′
A(k1) which is equal to zero because the eigenvalue

k1 is of multiplicity r1 therefore it holds that δ
(l)
A (k1) = 0 for l = 0, · · · , r1 − 1.
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We have proved that solving the linear system 3.1 for n = −1 we take the polynomial v(k) which
is such that v(A) = A−1.

Suppose now that we want to compute the matrix A−k for k ∈ N. Set B = Ak and we compute
the powers of B which are such that Bn = (Ak)n. The elements of Bn are of the form bij(n)
which are equals aij(nk) since (Ak)n = Akn. Therefore the elements of B−1 are bij(−1). Because
(Ak)−1 = A−k it follows that bij(−1) = aij(−k). Therefore the elements of the matrix A−k are
aij(−k) when the elements of Ak are the aij(k).

Remark 3.4 (Generalized inverse of Drazin). As we can see, even in the case where the matrix A
is not invertible, there always exist the matrix B with elements aij(−1). In this case the matrix B
coincides with the generalized inverse of Drazin (see the proof of theorem 3.2 and theorem 7.5.2 of
[16]). Therefore, one way to compute the generalized inverse of Drazin is to calculate the matrix
An and then get the matrix B with elements the aij(−1).

Example 3.3. We will compute the n-th power of the matrix P where

P =

(
3 0
1 1

)
by using the Cayley-Hamilton theorem. We compute the eigenvalues of the matrix which are k1 = 1
and k2 = 3. Next we write

kn = t(k)δP (k) + v(k)

By the Cayley-Hamilton theorem we have that Pn = v(P ). We have to compute the coefficients of
the polynomial v(k). In order to do this we construct the following linear system

1n = a+ b

3n = 3a+ b

which have the solution a = 3n−1
2

and b = 3
2
(1− 3n−1). Thus

Pn = aP + bI2×2 =

(
3n 0

3n−1
2

1

)
By using theorem 3.2 we can now compute the inverse of the matrix P which is

P−1 =

(
3−1 0

3−1−1
2

1

)

Example 3.4. We will compute the n-th power of the matrix

P =

 −3 6 0
2 1 0
0 0 3


The eigenvalues are k1 = 3 (double) and k2 = −5.

Dividing kn by the characteristic polynomial we obtain kn = t(k)δP (k) + v(k) where v(k) = ak2 +
bk+c. In order to compute the unknown coefficients of v(k) we will solve the following linear system

3n = 9a+ 3b+ c

3n−1n = 6a+ b

(−1)n5 = 25a− 5b+ c
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Finally

Pn = aP 2 + bP + c =

 21a− 3a+ c −12a+ 6b 0
−4a+ 2b 13a+ b+ c 0

0 0 9a+ 3b+ c



Example 3.5. Let the matrix

A =

 k 1 0
0 k 1
0 0 k


where k 6= 0. As before we have to compute the unknown coefficients of the polynomial v(k) =
b2k

2 + b1k + b0 in order to compute the matrix An. So we have to solve the following system

b2k
2 + b1k + b0 = kn

2b2k + b1 = nkn−1

2b2 = n(n− 1)kn−2

The solution is

b0(n) = kn
n2 − 3n+ 2

2

b1(n) = nkn−1(2− n)

b2(n) =
n(n− 1)

2
kn−2

Therefore the matrix An has the form

An = b2(n)A2 + b1(n)A+ b0(n)I3×3 =


kn nkn−1 1

2
n(n− 1)kn−2

0 kn nkn−1

0 0 kn


Using theorem 3.2 we can immediately compute the inverse of the matrix A which is

A−1 =


1
k
− 1
k2

1
k3

0 1
k
− 1
k2

0 0 1
k


Similarly, we can have the matrix A−n for every n ∈ N.

4 The Exponential Matrix

In this section we will study the function of a matrix and in particular the exponential matrix. We
will give three definitions for the function of a matrix. The first one is by the diagonalization of the
matrix, the second via the Taylor series of the function and the third one via the Cayley-Hamilton
theorem. We shall prove that all the above definitions are equivalent. More about this topic can
be found in [2].
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• Let An×n a matrix which is diagonalizable, that is there exist an invertible matrix P such that
A = PDP−1 where the diagonal matrix D contains the eigenvalue. Let a function f : C→ C such
that it is well possed at the eigenvalues of the matrix A. Then by f(A) we mean the matrix

fD(A) := P ·


f(k1) 0 · · · 0

0 0
. . . 0

... 0 f(ki) 0
0 · · · 0 f(kn)

 · P−1

where k1, · · · , kn are the eigenvalues of the matrix A not necessarily distinguished.

• Let the function f :→ which is such that all the derivatives are well defined in all of and that are
absolutely bounded in every bounded interval (for example the function ex). We define the matrix
f(A) as

fTaylor(A) :=

∞∑
k=0

f (k)(0)

k!
Ak

This matrix is well defined because the infinite series converges. Indeed, define by ∆ = maxi,j |Aij |
we have that

|(Ak)ij | ≤ nk−1∆k

We will prove it by induction. For k = 1 is obvious that |(A1)ij | ≤ n0∆. We assume that it holds
for some k, that is |(Ak)ij | ≤ nk−1∆k and we will prove that it holds for k + 1. We have that

|(Ak+1)ij | = |
n∑
l=1

(Ak)ilAlj | ≤
n∑
l=1

nk−1∆kAlj ≤ nk∆k+1

Therefore ∣∣∣∣∣
∞∑
k=0

f (k)(0)

k!
(Ak)ij

∣∣∣∣∣ ≤ 1 +

∣∣∣∣∣
∞∑
k=1

f (k)(0)

k!
(Ak)ij

∣∣∣∣∣ ≤ 1 +

∞∑
k=1

|f (k)(0)|
k!

nk−1∆k

That means that
∑∞
k=0

f(k)(0)
k!

(Ak)ij converges absolutely and therefore the matrix f(A) is well
defined.

• We will now describe the definition of the matrix f(A) via the Cayley-Hamilton theorem.

Let An×n a matrix with characteristic polynomial δA(k).

In the case where the function f : C → C is not a polynomial we can approximate it with a
polynomial p(k) and then set f(A) := p(A). We will describe next how this can be done.

Definition 4.1. Let An×n a matrix which has eigenvalues k1, · · · , kr of multiplicity l1,· · · ,lr
respectively. We say that a function φ : U ⊆→ is well posed at the eigenvalues of the matrix
A when there exist the derivatives φ(d)(ki) for 0 ≤ d ≤ l1 − 1. Let the minimum polynomial has

roots the k1, · · · , kr of multiplicity l
′
1,· · · ,l

′
r respectively. We say that the function φ is well posed

on the roots of the minimum polynomial when there exist the derivatives φ(d)(ki) for 0 ≤ d ≤ l
′
1−1.
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Let a function f which is well posed at the eigenvalues of the matrix A, which are k1, · · · , km of
multiplicity r1, · · · , rm respectively. By Pσ(A) we denote all the polynomials p(k) which have the

property that p(li)(ki) = f (li)(ki) for every 0 ≤ li ≤ ri − 1 where li ∈ N and for every eigenvalue
ki of the matrix A. Note that the set Pσ(A) is nonempty (Hermite interpolation) and moreover it
contains infinite many polynomials because in this set there exist polynomials that approximate
the function f and in other points excluding the eigenvalues of A. Here by f (li) we mean the li-th
derivative of the function.

The polynomials that belong in this set have a common property. Dividing any polynomial p(k) ∈
Pσ(A) by the characteristic of A we get that

p(k) = π(k)δA(k) + v(k) (4.1)

where v(k) is a polynomial of at most n − 1 degree and is independent of p(k) ∈ Pσ(A), which is
very crucial in our point of view. Setting k = A and using the fact that δA(A) = 0 we arrive at
p(A) = v(A).

We can compute the polynomial v(k) constructing n equations using the eigenvalues (and their
multiplicity) of A. For example substituting k by the eigenvalue k1 we obtain the equation

v(k1) = p(k1) = f(k1)

If this eigenvalue has multiplicity two or more then we construct more equations by differentiation
and so we have

v
′
(k1) = f

′
(k1)

supposing that the derivatives of f are well defined on the eigenvalues of A.

Therefore we construct the following linear system for the unknown polynomial v(k) = bm−1k
m−1 +

· · ·+ b0,

v(i)(k1) = f (i)(k1), i = 0, · · · , r1 − 1

...

v(i)(km) = f (i)(km), i = 0, · · · , rm − 1

where by v(i) and f (i) we mean the i-th derivative of the function. For i = 0 we mean the function
itself. The above linear system has a unique solution because the determinant of the corresponding
matrix is a generalized Vandermonde determinant.

Solving the above system we will compute the polynomial v(k) and we define as the matrix f(A)
the matrix v(A), that is

fCayley(A) := v(A)

Note that the matrix v(A) depends only on the function f and the eigenvalues of A. Moreover, if
the matrix A is a real matrix with eigenvalues k1, · · · , kr of multiplicity l1, · · · , lr and f : C→ C is
such that f (qi)(ki) = f (qi)(ki) (as for example the function f(z) = ez) for every qi ∈ N such that
0 ≤ qi ≤ li − 1 and for every i = 1, · · · , r then the matrix f(A) is real.

Example 4.1. Let the matrix

A =

(
0 1
−1 0

)
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We will compute the exponential matrix etA for t ∈. The eigenvalues of the matrix are k1 = i and
k2 = −i. We will compute the polynomial v(k) = ak + b which is such that

ai+ b = eit

a(−i) + b = e−it

Then we can write

a =
eit − e−it

2i
= sin t

Thus

b =
eit + e−it

2
= cos t

So the exponential matrix is the matrix etA = aA+ bI =

(
cos t sin t
− sin t cos t

)
.

5 Equivalence of the Definitions of the Function Matrix

In this section we will prove that all the above definitions are equivalent. That is, we will prove
that

fD(A) = fTaylor(A) = fCayley(A)

Suppose that the matrixAn×n is diagonalizable with eigenvalues k1, · · · , kn not necessarily distinguished.

Let a function f(x) which can be expanded in a Taylor series around zero and converges absolutely
in every closed interval of the form [−M,M ], that is

f(x) =

∞∑
k=0

f (k)(0)

k!
xk, for every x ∈ [−M,M ]

Because the matrix is diagonalizable it holds that

fD(A) = P ·



∑∞
l=0

f(l)(0)
l!

kl1 0 · · · 0

0 0
. . . 0

... 0
∑∞
l=0

f(l)(0)
l!

kli 0

0 · · · 0
∑∞
l=0

f(l)(0)
l!

kln

 · P−1

= P ·

(
∞∑
l=0

f (l)(0)

l!
Dl

)
· P−1

=

∞∑
l=0

f (l)(0)

l!
Al (5.1)

= fTaylor(A)

On the other hand, in order to compute the matrix Al by using the Cayley - Hamilton theorem we
should compute the unique solution of the system

an−1(l)kn−1
1 + · · ·+ a0(l) = kl1

... (5.2)

an−1(l)kn−1
n + · · ·+ a0(l) = kln
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Therefore the form of Al is

Al = an−1(l)An−1 + · · ·+ a0(l)In×n, for l = 0, 1, · · · ,

Remark 5.1. Note that when l < n then the unique solution of the system is al(l) = 1 and all the
other coefficients are all equal to zero.

Substituting on 5.1 we conclude that the matrix f(A) via diagonalization or by the Taylor series is

fD(A) = An−1
∞∑
l=0

f (l)(0)

l!
an−1(l)︸ ︷︷ ︸

bn−1

+ · · ·+ I

∞∑
l=0

f (l)(0)

l!
a0(l)︸ ︷︷ ︸

b0

(5.3)

We are allowed to rearrange the terms because we have proved the absolute convergence.

In order to prove that we obtain the same form of the matrix f(A) via the Cayley-Hamilton theorem

we should multiply every equation of the system 5.2 by f(l)(0)
l!

. Summing every equation for l = 0
to m we arrive at

kn−1
1

m∑
l=0

f (l)(0)

l!
an−1(l)︸ ︷︷ ︸

bmn−1

+ · · ·+
m∑
l=0

f (l)(0)

l!
a0(l)︸ ︷︷ ︸

bm0

=

m∑
l=0

f (l)(0)

l!
kl1

... (5.4)

kn−1
n

m∑
l=0

f (l)(0)

l!
an−1(l)︸ ︷︷ ︸

bmn−1

+ · · ·+
m∑
l=0

f (l)(0)

l!
a0(l)︸ ︷︷ ︸

bm0

=

m∑
l=0

f (l)(0)

l!
kl1

The coefficient bmi are obvious finite for every m. This linear system has a unique solution because
the determinant of the matrix of the system is a generalized Vandermonde determinant (see [15]).
Moreover, the matrix of the system is invertible and independent of m. Therefore it follows that

bmi = (K−1 · F )i (5.5)

where K is the matrix of this linear system and F the right hand side of the system. Because∑m
l=0

f(l)(0)
l!

kli converges to f(ki) as m→∞ it easily follows from the relation 5.5 that bmi → bi =∑∞
l=0

f(l)(0)
l!

ai(l) <∞ as m→∞.

Setting m =∞ in the system 5.4 we compute the unique solution of the system that is b0, · · · , bn−1.

Therefore the matrix f(A) has the following form via the Cayley-Hamilton theorem

fCayley(A) = bn−1A
n−1 + · · ·+ b0I (5.6)

Noting the relation 5.3 we observe that the above system drive us to the matrix fD(A).

In the case where there exist some eigenvalues with multiplicity two or more then at the system 5.2
will appear equalities via the differentiation. Let the eigenvalue ki is of multiplicity r. Then the
system 5.2 contains the following equations,

an−1(l)kn−1
i + · · ·+ a0(l) = kli

an−1(l)(n− 1)kn−2
i + · · ·+ a1(l) = lkl−1

i

...

an−1(l)(n− r)kn−1−r
i + · · ·+ ar(l) = l · (l − 1) · · · (l − r + 1)kl−ri
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We multiply these equations by f(l)(0)
l!

and then we sum from l = 0 to ∞. Therefore the system 5.4
will contain the following equations

kn−1
i

∞∑
l=0

an−1(l)
f (l)(0)

l!︸ ︷︷ ︸
bn−1

+ · · ·+
∞∑
l=0

a0(l)
f (l)(0)

l!︸ ︷︷ ︸
b0

=

∞∑
l=0

kli
f (l)(0)

l!

(n− 1)kn−1
i

∞∑
l=0

an−1(l)
f (l)(0)

l!︸ ︷︷ ︸
bn−1

+ · · ·+
∞∑
l=0

a1(l)
f (l)(0)

l!︸ ︷︷ ︸
b1

=

∞∑
l=0

lkli
f (l)(0)

l!

...

(n− r)kn−1−r
i

∞∑
l=0

an−1(l)
f (l)(0)

l!︸ ︷︷ ︸
bn−1

+ · · ·+
∞∑
l=0

ar(l)
f (l)(0)

l!︸ ︷︷ ︸
br

=

∞∑
l=0

l · (l − 1) · · · (l − r + 1)kl−ri

f (l)(0)

l!

We observe that the right hand side of the above equations equals to f(ki), f
′
(ki), · · · , f (r)(ki).

We will now explain the fact that we can use the minimum polynomial instead of the characteristic.

Let the minimum polynomial is of the form

mA(k) = (k − k1)d1 · · · (k − km)dm

where di ≤ ri for i = 1, · · · ,m. We define the set of polynomials P̂σ(A) which are such that

p(li)(ki) = f (li)(ki) for every 0 ≤ li ≤ di − 1 where li ∈ N and for every eigenvalue ki of the matrix
A. It holds that Pσ(A) ⊆ P̂σ(A). The polynomials that belongs to the set P̂σ(A) has the following
property. If we divide any them by the minimum polynomial then p(k) = mA(k)π(k) + v̂(k). The
polynomial v̂(k) is independent of p(k).

Remark 5.2. Denoting by v(k) the polynomial which is such that

p(k) = π(k)δA(k) + v(k)

and by v̂(k) the polynomial which is such that

p(k) = π̂(k)mA(k) + v̂(k)

where δA(k) is the characteristic polynomial of A, p(k) ∈ Pσ(A) and mA(k) the minimum polynomial
of A, it follows that v(A) = v̂(A). Therefore the matrix f(A), where f : C → C can be defined
uniquely either by the characteristic or by the minimum polynomial.

Let us summarize below the steps that we have to do in order to compute the matrices An and etA

given a matrix Am×m.

(i) We set f(x) = xn.

(ii) We compute the characteristic polynomial (or even better the minimum polynomial) in the
form (k − k1)r1(k − k2)r2 · · · (k − kl)rl where k1, · · · , kl the eigenvalues of the matrix A.
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(iii) We consider a polynomial v(k) = am−1k
m−1 + · · · + a1k + a0 in the case were we want

to use the characteristic polynomial. If we have computed the minimum polynomial and
r1 + · · ·+ rl = q ≤ m then v(k) = aq−1k

q−1 + · · ·+ a0 where r1, · · · , rl are the multiplicities
of the eigenvalues concerning the minimum polynomial. We construct the following linear
system

v(k1) = am−1k
m−1
1 + · · ·+ a1k1 + a0 = f(k1)

v
′
(k1) = (m− 1)am−1k

m−2
1 + · · ·+ a1 = f

′
(k1)

...

v(r1−1)(k1) = f (r1−1)(k1)

v(k2) = am−1k
m−1
2 + · · ·+ a1k2 + a0 = f(k2)

v
′
(k2) = (m− 1)am−1k

m−2
2 + · · ·+ a1 = f

′
(k2)

...

v(r2−1)(k2) = f (r2−1)(k2)

...

v(kl) = am−1k
m−1
l + · · ·+ a1kl + a0 = f(kl)

v
′
(kl) = (m− 1)am−1k

m−2
l + · · ·+ a1 = f

′
(kl)

...

v(rl−1)(kl) = f (rl−1)(kl)

(iv) We solve for the unknown coefficients a0, · · · , am−1. Then

An = am−1A
m−1 + · · ·+ a1A+ a0Im×m

In order to compute the exponential matrix etA we just set f(x) = etx and we follow the same
procedure. All the above remain true even in the case where the matrix A is complex.

Example 5.1. Let the matrix

A =


1 0 0

0.4 0.6 0

0 0.4 0.6


We will compute the matrices An and etA using the minimum polynomial of A.

In order to compute the minimum polynomial we construct the matrix B9×4 in which at the first
column we place the matrix I, at the second column the matrix A and so on. We arrive at the
matrix
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B =



1 1 1 1

0 0.4 0.64 0.784

0 0 0.16 0.352

0 0 0 0

1 0.6 0.36 0.216

0 0.4 0.48 0.432

0 0 0 0

0 0 0 0

1 0.6 0.36 0.216


Next we compute the reduced row echelon form of the matrix B which is

B̂ =



1.0 0.0 0.0 0.36

0.0 1.0 0.0 −1.56

0.0 0.0 1.0 2.2

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0


We see that the number of the leading ones is three so the degree of the minimum polynomial is
also three. That is the degree of the minimum polynomial equals to the degree of the characteristic
polynomial. We find the coefficients of the minimum polynomial at the next column after the last
leading one. That is, the minimum polynomial is the following

−0.36 + 1.56k − 2.2k2 + k3

Note that the matrix is not diagonalizable.

Set now f(x) = xn and g(x) = etx. We construct the following linear system

a+ b+ c = f(1) (or) g(1)

0.36a+ 0.6b+ c = f(0.6) (or) g(0.6)

1.2a+ b = f
′
(0.6) (or) g

′
(0.6)

The matrix of this system is

F =


1 1 1

0.36 0.6 1

1.2 1 0


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This matrix is invertible and the inverse is

F−1 =


6.25 −6.25 −2.5

−7.5 7.5 4

2.25 −1.25 −1.5



Therefore (a, b, c) will be equal to F−1 ·

 f(1)
f(0.6)

f
′
(0.6)

 for the matrix An or F−1 ·

 g(1)
g(0.6)

g
′
(0.6)

 for the

matrix etA.
For the matrix An it follows that

a = 6.25− 6.25 · 0.6n − 2.5 · n · 0.6n−1

b = −7.5 + 7.5 · 0.6n + 4 · n · 0.6n−1

c = 2.25− 1.25 · 0.6n − 1.5 · n · 0.6n−1

and therefore An = aA2 + bA+ cI, that is

An =


1.0 0.0 0.0

1.0− 0.6n 0.6n 0.0

1.− 0.6n − 0.4 · n · 0.6n−1 0.4 · n · 0.6n 0.6n


In order to check the validity of the above one can use induction. Moreover, substituting n by −1
we take the inverse of the matrix A (see theorem 3.2).

For the exponential matrix we have

a = 6.25 · et − 6.25 · e0.6t − 2.5 · t · e0.6t

b = −7.5 · et + 7.5 · e0.6t + 4te0.6t

c = 2.25 · et − 1.25 · e0.6t − 1.5 · t · e0.6t

Therefore etA = aA2 + bA+ cI, that is

etA =


et 0.0 0.0

et − e0.6t e0.6t 0.0

et − e0.6t − 0.4te0.6t 0.4 te0.6 t e0.6 t


In order to check the validity of the above we can use the fact that the exponential matrix is the
unique matrix P (t) that satisfies the following differential equation

P
′
(t) = AP (t)

P (0) = I

6 Leverrier - Faddeev Algorithm

In this section we will study the Leverrier - Faddeev algorithm for the computation of the characteristic
polynomial of a matrix A. The construction of this algorithm that we are going to present comes
from the paper [4] giving a simpler form.
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Let the matrix Am×m and δA(k) = km + a1k
m−1 + · · ·+ am its characteristic polynomial. Let the

matrices N1, · · · , Nm (that we are going to compute them below) such that

(kI−A)N(k) = IδA(k) (6.1)

where N(k) = N1k
m−1 + · · ·+ Nm. We consider the family of matrices B(s) = sI − A. Note that

if the eigenvalues of A are k1, · · · , km (not necessarily distinguished) then the eigenvalues of B(s)
are the λi = s− ki. Indeed, because

|λI−B(s)| = |λI− sI +A| = (−1)m|(s− λ)I−A|

then we easily get the desired result.

The matrix B(s) is invertible if and if λi = s− ki 6= 0 for i = 1, · · · ,m. In this case (that is s 6= ki
for i = 1, · · · ,m) the inverse is (sI−A)−1 with eigenvalues 1

s−ki
.

Then it holds that

N(s)

δA(s)
= (sI−A)−1, when s 6= ki (6.2)

where ki for i = 1, · · · ,m the eigenvalues of the matrix A.

Moreover

trace(sI−A)−1 =
1

s− k1
+ · · ·+ 1

s− km
=
δ
′
A(s)

δA(s)
(6.3)

But

A = sI− (sI−A)

If s 6= ki we multiply by (sI−A)−1 and we have that

s(sI−A)−1 − I = A(sI−A)−1

Then

s
δ
′
A(s)

δA(s)
−m = trace

AN(s)

δA(s)
, s 6= ki

from which it follows that

−a1sm−1 − 2a2s
m−2 − · · · − (m− 1)am−1s−mam =

(traceAN1)sm−1 + (traceAN2)sm−2 + · · ·+ (traceANm−1)s+ traceANm

Thus

ai = −1

i
traceANi, i = 1, 2, · · · ,m

In order to compute the matrix Ni we will use the relation

(kI−A)N(k) = IδA(k)

From this relation it follows that

N1k
m +N2k

m−1 + · · ·+Nmk − (AN1k
m−1 +AN2k

m−2 + · · ·+ANm) = IδA(k)
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Therefore we arrive at the following algorithm

N1 = I, a1 = − 1
1
traceAN1

N2 = AN1 + a1I, a2 = − 1
2
traceAN2

...
...

Nm = ANm−1 + am−1I, am = − 1
m
traceANm

0 = ANm + amI

The last equation can be used for the computation of the inverse of A. Indeed, ANm = −amI and
therefore Nm = −amA−1. Substituting for Nm at the last equation we get

A−1 = − 1

am
ANm−1 −

am−1

am
I

Remark 6.1 (Computing the minimum and characteristic polynomial). If we want to compute the
minimum and the characteristic polynomial we can use the Leverrier - Faddeev Algorithm. We
construct the matrix B as we have described (in order to compute the minimum polynomial) and
then the reduced row echelon form B̂. At this stage we can compute the minimum polynomial
of degree r but using the Leverrier - Faddeev Algorithm we can compute also the characteristic.
Using this algorithm we can find the coefficients ar+1, · · · , am−1 of the characteristic δA(k) =
km + am−1k

m−1 + · · ·+ a0. Then, by using the reduced row echelon form of B, i.e. the matrix B̂,
we compute the rest of the coefficients.

7 Conclusion

In this review article we discuss the computation of the minimum polynomial of a matrix giving
a simpler proof than the [1]. Next we show how to compute the nth power of a matrix and the
exponential matrix using the Cayley-Hamilton theorem. Using this method it is not necessary the
matrix to be diagonizable. By this method we can characterize the elements of A−n when A is
invertible and we see that these elements are the aij(−n) if the aij(n) are the elements of An. But
even if the matrix is not invertible the matrix B whose elements are the aij(−n) is well defined
and appears to be the Drazin inverse of the matrix. Finally, we give a simpler presentation of the
Leverrier - Faddeev algorithm.
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