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The quark-quark (QQ) interaction as a perturbed term to the nucleon-nucleon interaction (NN) without any coupling between
them is studied in a hybrid model. This model is used to calculate the ground-state energies of 2H1 and 4He2 nuclei. In a
semirelativistic framework, this model is encouraged for light nuclei and the instanton-induced interaction by using the QQ
potential and the NN interaction for a small scale around the hadron boundaries. This hybrid model depends on two theories,
the one-boson exchange potential (OBEP) and the Cornell-dressed potential (CDP) for QQ. A small effect of quark-quark
interaction is obtained on the values of the ground-state energies, around 6.7 and 1.2 percentage for 2H1 and

4He2, respectively
nuclei.

1. Introduction

One of the fundamental problems of the nuclear structure is
the derivation of the ground-state energies through different
methods, such as properties related to the constituents of
matter, which are represented in the physics of elementary
particles with their characteristics and how each particle
interacts with others. The interaction between each nucleon
with all other nucleons generates an average potential field
where each nucleon moves. The rules of the Pauli exclusion
principle govern the occupation of orbital quantum states
in the shell model and postulate that under the meson
exchange between two nucleons, the wave function is the
antisymmetrical product wave function. The calculation of
the nuclear mean-field potential with Dirac-Hartree-Fock
qualifies the description of nucleon-nucleon interaction to
be successful microscopically. The interaction between two
nucleons has three regions with three ranges. The first region
originated from pseudoscalar meson, the second region was
related to the scalar meson, and the third region was caused
by the exchange of vector meson besides the effects of quan-
tum chromodynamics (QCD). The nucleon-nucleon poten-

tial has no definite method to determine it. The Bonn
group potential known as one-boson exchange potential is
supposed to be the suitable model for this interaction because
of the reduction of free parameters and fitting them
accurately with the experimental data.

On the other hand, the quark degrees of freedom are
under the dynamics of QCD. The interaction between quarks
has various forms of potentials, and these forms have to
regard the quark properties (confinement and asymptotic
properties). The mechanism of the one-gluon exchange
approach is dominant at the short range with two parts.
The linear confinement at a long distance and a part of the
asymptotic property represented in the pairing force acting
only on the quark-antiquark states. The constituents of
baryons composed of u, d, s quarks can use a semirelativistic
potential model that refers to their interaction, including the
instanton-induced forces. The instanton-induced model is
used to describe baryons composed of light quarks that are
demanded in the considered baryons. This interaction
resembles the tunneling phenomena as it can be affected out-
side the hadron for a short scale comparing with the confine-
ment scale. In the used model, we have two contributions in
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the potential form, the one-gluon exchange part and the
exchange of pseudo particles between quark-antiquark pair.
The possibility of proposing a hybrid model with no coupling
between quarks inside the baryon and mesons outside it can
be founded based on the variational concept of physics. In the
present work, the ground-state energies for some light nuclei
can be calculated successfully by using the considered hybrid
model.

In Section 2, we introduce the theory of NN interaction
through the one-boson exchange potential with investiga-
tions and motivations of the formula. In Section 3, we have
a brief look at the QQ interaction, and the reason for choos-
ing Cornell-dressed potential is mentioned to make the idea
of the hybrid model possible. In Section 4, where the theoret-
ical analysis for the construction of one-boson exchange
potential through the exchange of two, three, and four
mesons is clarified. Section 5 shows the theoretical analysis
of QQ interaction and the final form of CDP. Finally, in Sec-
tions 6 and 7, the obtained results and conclusion are given.

2. Theory of NN through the OBEP

The start of using the fact that there is no unique potential for
determination of the effective NN potential leads to exist dif-
ferent forms with different methods. So, this work concerned
to show the effect of our potential which is published in pre-
vious work [1]. Our potential is constructed with the idea of
one-boson exchange and also depends on the motion of
nucleons in the nucleus. This motion produced a field called
nuclear mean field, and the interaction between nucleons is
controlled with Pauli principle and nuclear shell model. We
considered the spatial exchange between two nucleons, so
the nonlocal field is determined with the Hartree-Fock
approximation, since the Fock effect is demonstrated in the
nonvanishing spatial components for the vector part of the
potential. Our potential implies the Dirac-Hartree-Fock
method to determine the wave function and energy of a
quantum N-body system in a stationary state. We classified
our potential as a semirelativistic model because of neglecting
the fourth power of momentum to simplify the formula, and
it will be included in following work. Our potential is associ-
ated with the Bonn group to have the meson’s function and
its parameters. To calculate the ground-state energies of the
Hartree-Fock approximation, we need to minimize the total
energy of single particle potential by the Steepest descent
methods directly to have the lowest energy. It is demanded
for a modification of nucleon wave functions and energy.

The modification of wave function is demonstrated by
Clebsch-Gordan coefficients and Talmi-Moshinsky har-
monic oscillator bracket, affecting on the radial, spin, and
isotopic wave functions. We use the formalism of second
quantization just as a convenient way of handling antisym-
metric wave function. This formalism referred as a represen-
tation of the occupation number; hence, it leads to be
represented in the Fock-state basis which can be constructed
by filling up each single-particle state with a certain number
of identical particles. As a real-space basis, we write the anti-
symmetric wave functions in a Slater determinant. Second
quantization gives us the ability to displace the wave function

as a Dirac state and do the same for Slater determinant. So,
we use operators to specify the occupied orbitals and the field
operators to define the coordinates for the real-space repre-
sentation. It is noticed that the atom in a quantum state of
energy (E) depends only on that energy through the Boltz-
mann factor and not on any other property of the state when
we represent this atom in complete thermal equilibrium to
determine the ground-state energy for the considered nuclei.
We use this fact to neglect the tensor force for the deuteron
nucleus and calculate its wave function in S-state only.

The fact of being the vector mesons and QCD affected on
the nuclear properties at short range; hence, the studying of
nucleon-nucleon interaction through OBEP should not be
enough. The exchange of bosons with OBE potential models
comes about more than size of nucleon or equal to the inter-
nucleon distances. We have the effect of QCD at distance less
than or almost around the boundaries of hadron, and that is
necessary for the description of nucleon-nucleon interaction.
The quantitative theoretical models can analyze the experi-
mental data based on the degrees of hadrons over the last
three decades [2–8], and also, the quark degrees of freedom
in QCD models are successful models for the description of
the nuclear properties [9–12]. These models analyze the
static properties of baryon successfully. We are concerned
to add the quark degrees of freedom as a perturbed term to
the meson degrees of freedom and have a Hamiltonian
equation of two parts as the following:

H =HNN +HQQ, ð1Þ

where the Hamiltonian of the nucleon-nucleon interac-
tion is HNN and the hamiltonian of the quark-quark interac-
tion is HQQ. So, we study the OBEP with the exchange of
three and four mesons as it represents the nucleon-nucleon
interaction and the Cornell-dressed potential as the quark-
quark interaction for constructing more realistic model of
the nuclear properties.

3. Theory of QQ through the CDP

The simulation of quark-quark interaction phenomenon in a
semirelativistic framework shows that the long range part of
this interaction is increasing linearly with the distance and is
called confinement, and the short range of interaction is a
result of Coulomb-like interaction (one-gluon exchange).
The idea of considering the contribution of the constant
potential is dominant than the other contributions to the
quark-quark potential worth good thinking of it as in [13,
14], and a good spectra of mesons and baryons are obtained.
At first, very good results for the charmonium spectrum
obtained from a simple form of a potential are called Funnel
potential or Cornell potential [15, 16]. The Hamiltonian of
hadrons containing light quark should simultaneously define
a number of relativistic corrections. The momentum-
dependent corrections as well as a nonlocal kinetic energy
(there is no commutation with faster than light, and it is
compatible with special relativity) is required to be included
in the effects of relativistic kinematics of the potential of the
potential energy operator [17]. These relativistic kinematics
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are included in the Bethe-Salpeter equation, neglecting the
spin effect which introduces nonlocal modifications of the
relative coordinate. The spinless Salpeter equation has the
form

H = 〠
3

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
!
i

2 +m2
i

q
+ 〠

3

i<j=1
Vij: ð2Þ

This is suitable for baryon where H is the total energy of
the system, V is the central potential between two particles

ði, jÞ, and p
!

is their relative momentum. In the case of
baryon, mi is the constituent mass of quarks with the same
mass of u and d quarks (isospin symmetry is maintained).
The central potential is the Cornell potential,

VC rð Þ = 1
2

−k
r

+ ar + C
� �

: ð3Þ

The factor half is related to the half rule, k is the Coulomb
parameter, a is the string constant, and C is additive constant
equals zero in the heavy quark sector. To solve the spinless
Salpeter equation, [17] expanded the wave function in terms
of a complete set of basis functions according to Rayleigh,
Ritz, and Galerkin methods as the previous radial wave func-
tion in OBEP. Many symmetries are slightly broken in nature
as it can give rise to the classical solutions to a particular
symmetry-breaking amplitude. This amplitude is similar to
the tunneling effect; indeed, the classical solutions of the
equation of motion can sometimes describe the tunneling
through a barrier. The classical solution of equations of
motion was introduced in Yang-Mills theory, known as
“instanton” term. The computation of the quantum effects
of instantons was introduced by ‘t Hooft [18] firstly. In [13,
14], the authors went with instanton-induced interaction (it
is a solution to the equations of motion of the classical field
theory, and it is supposed to be critical points of the action
for such quantum theories). In nonrelativistic quark model,
it is assumed that this model is based on the confinement
potential and a residual interaction. The residual interaction
is related to the reduction of the one-gluon exchange OGE.
One is able to compute the residual interaction by ‘t Hooft
force from instanton effects [18, 19]. Ref [15] proposed a
model of quark interaction with the replacement of the tradi-
tional OGE potential by a nonrelativistic limit of ‘t Hooft’s
interaction. The residual interaction is observed by ‘t Hooft
as an expansion of the Euclidean action around the single
instanton solutions under the assumption of zero mode in
the fermion sector. This interaction has an effective Lagrang-
ian with effective potential between two quarks. The instan-
ton calculus can be summarized by four steps [20].

(i) The gluon fields cannot deform the instantons into
classical solutions continuously

(ii) The perturbative gluon diagrams cannot cover the
effective interaction between quarks which caused
by instantons

(iii) The instanton calculus denotes as a nonperturbative
method for the calculation of path integrals, which
are represented in the fluctuations around the
instanton and change the action. All of this is nor-
mally done in the Gaussian approximation

(iv) The instanton effects in QCD realized that instanton
is similar to be described as 4-dimensional gas of
pseudo particles; then, use the summation over the
instanton gas

In the first analogy of super conductivity with the
Bardeen-Cooper-Schrieffer theory [21], when the interaction
between fermions (nucleons) and light quarks is attracted
strongly at the short range, this interaction can rearrange
the vacuum and the ground state affected by it which resem-
bles the effect of super conductivity. Then, the short range
interaction can bind these constituent light quarks into had-
rons without confinement in order to make quantitative pre-
dictions for hadronic observable. It is clarified that instanton
is represented as a tunneling event between vacua [22].

4. Theoretical Analysis of OBEP

The general form which describes the ground-state energy of
the considered system is the following:

H Ψj i = E Ψj i, ð4Þ

where H is the Hamiltonian and E is the total energy of the
system.

E = T +V , ð5Þ

defining T as kinetic energy and V as the potential
energy. Hence, the Hamiltonian fermions are interacting
via the potential Vij. Thus, the accurate Hamiltonian interac-
tion of the nuclear system can be described by Dirac to rep-
resent the number of fermions’ interaction where this
Hamiltonian is [23–26] as follows:

H = 〠
A

i

cα!i:p
!

i + βi − Ið Þmic
2 + Tij +

1
2〠

A

i≠j
Vij, ð6Þ

where α
!
and β are 4 × 4Dirac matrices, c is the speed of light,

mi is the nucleon mass, Tij is the relative kinetic energy, and

p
!
is the momentum operator.
See Appendix A for the details of relative kinetic energy

calculations to have the following equation [27–30]:

Tij =
2
mA

〠
i<j
p2ij: ð7Þ

Substituting the last equation in Equation (6), thus the
relativistic Hamiltonian operator for bound nucleons which
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interact strongly through the potential can be expressed as
follows:

H = 〠
A

i

Cα!i:p
!
i + βi − Ið Þmic

2 + 2
mA

〠
A

i<j
p2ij + 〠

A

i<j
Vij: ð8Þ

In the Hartree-Fock theory, we seek for the best state giv-
ing the lowest energy expectation value of this Hamiltonian
to determine the ground-state energy of the considered
nuclei. One is able to ensure the antisymmetry of the fer-
mions’ wave functions with the aid of Slater determinant
introduced in 1929 and Hartree product to have the conve-
nient form in calculating the ground-state energy as the fol-
lowing wave function which is suitable for fermions [24]:

Ψ rð Þ = 1ffiffiffiffiffi
A!

p det Ψi r!i

� �
, ð9Þ

where the wave function of all nucleons isΨðrÞ and the wave
function for i-nucleon is ΨiðrÞ. The wave function for
nucleon i depends on the oscillator parameter as

Ψi r!i

� �
= CiαFα r!i

� �
, ð10Þ

where Ciα is the oscillator constant and Fα is the wave func-
tion of two components.

Fα =
Φα

χα

+����� , ð11Þ

where the wave function for radial component is Φα and the
spin component is χα. The principle of antisymmetry of the
wave function was not completely explained by the Hartree
method according to Slater and Fock independently. So the
accurate picture in calculating the ground-state energy is
the Hartree-Fock approximation.

〠
iαβ

hiC
∗
iαCiβ Fα ∣ Fβ

� 	
=〠

iαβ

C∗
iαCiβ Fα rð Þ cα!i:p

! + βi − Ið Þmic
2

��� ���Fβ

D E
+〠

i<j
〠
αγβδ

C∗
iαCiβC

∗
jγCjδ FαFγ

2
mA

P2
ij +Vij


 ����� ���� gFβFδ

� 
,

ð12Þ

where Ciβ is the occupation number or the oscillator number
(for a system consisting of fermions or particles with half-
integral spin, the occupation numbers may take only two
values: 0 for empty states or 1 for filled states). The two com-
ponents of the wave functions have the following relation
between them [31, 32].

χ = 1 − ε − v
2Mc2

� � σ
!
:p
!

2mc
ϕ: ð13Þ

Using the relation Equation (13), where ε is external
energy which equals zero, here we deal with ground state
and c3 makes the value so small and can be neglected.

χ ≅
σ
!
:p
!

2mc
ϕ, ð14Þ

Ψi rð Þ Ej jΨi rð Þh i = Ψi rð Þ Ĥ1
�� ��Ψi rð Þ� 	

+ Ψi rð Þ Ĥ2
�� ��Ψi rð Þ� 	

:

ð15Þ

Differentiate Equation (12) with respect to Ciα, and thegFβFδ has a sign defines the exchange that happening
between the two nucleons, hence substituting ∑jC

∗
jγCjδ = 1

and hFα ∣ Fβi = 1.

〠
iαβ

Ciβ Fα Ĥ1
�� ��Fβ

� 	
+〠

i<j
FαFγ Ĥ2

�� �� gFβFδ

D E
− hi

" #

=〠
iαβ

Ciβ

"
Fα cα!i:p

! + βi − 1ð Þmic
2

��� ���Fβ

D E
+〠

i<j
FαFγ

2
mi

P2
ij +Vij


 ����� ���� gFβFδ

� 
− hi

#
= 0:

ð16Þ

Treating with the 1st part of Equation (16) gives us the
coming formula.

H1 =〠
iαβ

Ciβ Fα cα!i:p
! + βi − Ið Þmic

2
��� ���Fβ

D E
: ð17Þ

Taking into account Dirac matrices [33] with defining

the wave functions in bracket as jFαi =
ϕα

χα

�����
+

and hFαj =

hϕα χαj,

α
! = 0 σ

!

σ
! 0

 !
,

β =
I 0
0 −I

 !
,

ð18Þ

where unit matrix I =
1 0
0 1

 !
:
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Substituting α, β in H1 will have the following result:

Fα H1j jFβ

� 	
= Fα c

0 σ
!

σ
! 0

0@ 1A:p
! +

I 0

0 −I

 !
−

1 0

0 1

 !" #
mic

2

������
������Fβ

* +

= ϕα

σ
!
:p
!� �

σ
!
:p
!� �

2m

������
������ϕβ

* +
+ ϕα

σ
!
:p
!� �

σ
!
:p
!� �

2m

������
������ϕβ

* +

− ϕα
σ
!
:p
!� �

σ
!
:p
!� �

m

������
������ϕβ

* +
= 0:

ð19Þ

The 1st term of kinetic energy tends to zero, and this
result has an agreement with another calculations in [34]
After the treatment of the kinetic terms are done, the residual
Hamiltonian of the expectation value becomes

H =H2 =〠
i<j

2
mi

p2ij +Vij


 �
ð20Þ

The popular form of the force between two nucleons is
cleared according to meson exchanges. The potential form
of one-boson exchange Vij between two nucleons ði, jÞ is
based on the degrees of freedom associated with three
mesons, pseudoscalar, scalar, and vector mesons.

Vij rð Þ =Vπ rð Þ + Vσ rð Þ +Vω rð Þ +Vρ rð Þ: ð21Þ

The Dirac representation [32, 35] for functions of mesons
will be used in addition to VωðrÞ =VρðrÞ, and get the follow-
ing representations.

Vps rð Þ = γoi γ
5
i γ

o
jγ

5
j Jps, ð22Þ

Vσ rð Þ = −γoi γ
o
j Jσ, ð23Þ

Vω rð Þ = γoi γ
o
j γ
!
i
μ
γ
!

j
μ
Jω, ð24Þ

γ
!

i
μ
γ
!

j
μ = γoi γ

o
j − γ

!
i γ
!

j

h i
, ð25Þ

where

β ≡ γoi =
1 0

0 −1

 !
γ
!
i =

0 σ
!

−σ! 0

0@ 1Aγ5

= iγoγ1γ2γ3 =
0 I

I 0

 !
:

ð26Þ

Substitute Equations (22) and (26) into Equation (21) to
get the expectation value by three potentials Vπ, Vσ, and Vω.

FαFγ Vij rð Þ�� �� gFβFδ

D E
= FαFγ Vps

�� �� gFβFδ

D E
+ FαFγ Vsj j gFβFδ

D E
+ FαFγ 2Vvj j gFβFδ

D E
= FαFγ Vπj j gFβFδ

D E
+ FαFγ Vσj j gFβFδ

D E
+ FαFγ 2Vωj j gFβFδ

D E
,

FαFγ Vij rð Þ�� �� gFβFδ

D E
= ϕα χαð Þ� �� ϕγ χγ

� �� �� 1 0

0 −1

 !
i

0 1

1 0

 !
i

�
1 0

0 −1

 !
j

0 1

1 0

 !
j

Jπ
ϕβ

χβ

0@ 1A������
+

ϕδ

χδ

 !�����
+

+ ϕα χαð Þ� �� ϕγ χγ

� �� �� −1 0

0 1

 !
i

1 0

0 −1

 !
j

� Jσ
ϕβ

χβ

0@ 1A������
+

ϕδ

χδ

 !�����
+

+ 2 ϕα χαð Þ� �� ϕγ χγ

� �� ��
�

1 0

0 1

 !
i

1 0

0 1

 !
j

Jω
ϕβ

χβ

0@ 1A������
+

ϕδ

χδ

 !�����
+

− 2 ϕα χαð Þ� �� ϕγ χγ

� �� �� 0 σ
!

σ
! 0

0@ 1A
i

0 σ
!

σ
! 0

0@ 1A
j

� Jω
χβ

−ϕβ

0@ 1A������
+

ϕδ

χδ

 !�����
+
:

ð27Þ

According to the relation between ϕ and χ in Equation
(14), one obtains

FαFγ Vij rð Þ�� �� gFβFδ

D E
= ϕαϕγ

1
4m2c2

Jπ σ
!

j:p
!

j

� �
− σ

!
j:p
!

j

� �
Jπ σ

!
i:p
!

i

� �h�����
− σ

!
i:p
!

i

� �
Jπ σ

!
j:p
!

j

� �
+ σ

!
i :!pi

� �
σ
!

j:p
!

j

� �
Jπ
i���

− Jσ + 2Jω +
1

4m2c2

�
σ
!

i:p
!
i

� �
Jσ σ

!
i:p
!
i

� �
+ σ

!
j:p
!

j

� �
Jσ σ

!
j:p
!

j

� �
+ 2 σ

!!
i:p
!
i


 �
Jω σ

!
i:p
!
i

� �
+ σ

!
j:p
!

j

� �
Jω σ

!
j:p
!

j

� �
− 2Jω σ

!
i:σ
!

j

� �
σ
!

j:p
!

j

� �
� σ

!
i:p
!

i

� �
− 2 σ

!
j:p
!

j

� �
Jω σ

!
i:σ
!

j

� �
σ
!
i:p
!
i

� �
− 2 σ

!
i:p
!
i

� �
Jω σ

!
i:σ
!

j

� �
σ
!

j:p
!

j

� �
− 2 σ

!
i:p
!

i

� �
� σ

!
j:p
!

j

� �
Jω σ

!
i:σ
!

j

� ������gϕβϕδ:

ð28Þ
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Defining the momentum for each nucleon (i, j) p
!

i = p
!
r

+ 1/2p!R, p
!

j = −p!r + 1/2p!R [27, 36]. Substituting those rela-

tions into Equation (28), where p
!

r = p
!
and ðσ!i:p

!
RÞðσ!i:p

!
RÞ

= p2R, we obtain

Vij rð Þ = −Jσ + 2Jω +
1

4m2c2
σ
!
i:p
!� �

Jσ σ
!
i:p
!� �h

+ σ
!

j:p
!� �

Jσ σ
!

j:p
!� �

+ 2 σ
!
i:p
!� �

Jω σ
!

i:p
!� �

+ 2 σ
!

j:p
!� �

Jω σ
!

j:p
!� �

+ 2Jω σ
!

i:σ
!

j

� �
� σ

!
j:p
!� �

σ
!

i:p
!� �

+ 2 σ
!

i:p
!� �

Jω σ
!
i:σ
!

j

� �
� σ

!
j:p
!� �

+ 2 σ
!

j:p
!� �

Jω σ
!

i:σ
!

j

� �
σ
!
i:p
!� �

+ 2 σ
!

i:p
!� �

σ
!

j:p
!� �

Jω σ
!

i:σ
!

j

� �
+ 2Jω σ

!
i:σ
!

j

� �
� σ

!
j:p
!� �

σ
!

i:p
!

R

� �
− 2Jω σ

!
i:σ
!

j

� �
σ
!

j:p
!
R

� �
� σ

!
i:p
!� �

+ 2 σ
!

j:p
!� �

σ
!

i:p
!

R

� �
Jω σ

!
i:σ
!

j

� �
− 2 σ

!
i:p
!� �

σ
!

j:p
!
R

� �
Jω σ

!
i:σ
!

j

� �i
+ 1
8m2c2

� σ
!

i:p
!� �

σ
!
i:p
!
R

� �
Jσ + Jσ σ

!
i:p
!
R

� �
σ
!

i:p
!� �h

− σ
!

j:p
!� �

σ
!

j:p
!
R

� �
Jσ − Jσ σ

!
j:p
!
R

� �
σ
!

j:p
!� �

+ 2 σ
!

i:p
!� �

σ
!
i:p
!
R

� �
Jω + 2Jω σ

!
i:p
!

R

� �
σ
!
i:p
!� �

− 2 σ
!

j:p
!� �

σ
!

j:p
!
R

� �
Jω − 2Jω σ

!
j:p
!
R

� �
σ
!

j:p
!� �

+ p
!

R

2
Jσ + 2p!R

2
Jω − 2Jω σ

!
i:σ
!

j

� �
σ
!

j:p
!

R

� �
σ
!
i:p
!
R

� �i
+ 1
4m2c2

−Jπ σ
!

j:p
!� �

σ
!
i:p
!� �

+ σ
!

j:p
!� �

Jπ σ
!
i:p
!� �h

+ σ
!
i:p
!� �

Jπ σ
!

j:p
!� �

− σ
!
i:p
!� �

σ
!

j:p
!� �

Jπ
i
:

ð29Þ

We will apply some important relations [37]

σ
!

1:A
!� �

σ
!

1:B
!� �

= A:B + iσ
!
1 A × Bð Þ,

σ
!

1:A
!� �2

= A2,

σ
!

1:A
!� �

σ
!
2:A
!� �

= 2
ℏ2

S:Að Þ2 − A2,

σ
!
:A
!� �

F rð Þ σ
!
:A
!� �

= F rð ÞA2 − iℏ ∇F rð Þ:A + iσ
! ∇F rð Þð Þ × A½ �

n o
:

ð30Þ

Include these relations in potential equation. We substi-
tute every term by using the relation of angular momentum

L
!
= r! × p

!
, σ
! = 2S

!
/ℏ (where S

!
is the total spin operator), p

!

= −iℏ∇, and ∇Jσ = 1/rðdJσ/drÞr. According to the previous

relations, where σ
!

j
2 = σ

!
x
2 + σ

!
y
2 + σ

!
z
2 = 1 as triplet case for

two nucleons,

σ
!

j:p
!� �

Jω rð Þ σ
!

jσ
!

j

� �
σ
!

j:p
!� �

= σ
!

j:p
!� �

Jω rð Þσ!j
2

σ
!
i:p
!� �

= −3Jω rð Þp2 + 3ℏ2 dJω
dr

d
dr

� �
−
6
r
dJω
dr

S
!

j:L
!h i

,

σ
!
i:p
!� �

Jω rð Þ σ
!

iσ
!

j

� �
σ
!

j:p
!� �

= −3Jω rð Þp2 + 3ℏ2 dJω
dr

d
dr

� �
−
6
r
dJω
dr

S
!
i:L
!h i

:

ð31Þ

With total spin operator S
!
and the meson function JðrÞ,

using [38] ðS!:p!Þ
2
= ðS!:n̂Þ

2
p2, ðσ!i:σ

!
jÞ = 2/ℏ2ðS2 − 3Þ and S

!
:

L
!
= ℏ2/2½JðJ + 1Þ − LðL + 1Þ − SðS + 1Þ�. Quantum mechan-

ics have a magnificent tool; this tool is the harmonic oscilla-
tor which is capable of being solved in closed form, and it has
generally useful approximations and exact solutions of differ-
ent problems [39]. It solves the differential equations in
quantum mechanics. We have the energy of harmonic oscil-
lator ðℏωð2n + l + 3/2ÞÞ which equals the kinetic energy ðp2/
2mÞ added to the potential energy ðð1/2Þmω2x2Þ to simplify
the solution and get the result. It is slitted in relative har-
monic oscillator energy ℏωð2n + l + 3/2Þ = p2/2μ + 1/2μω2r2

[30, 40], with ω that is the angular frequency and center of
mass contribution in harmonic oscillator energy ℏωð2N + L
+ 3/2Þ = p2/2M + 1/2Mω2R2. We suppose the nucleons have
average masses mn +mp/2, so the relative mass μ =m1m2/
m1 +m2 =m/2, and center mass M =m1 +m2 = 2m.

Vij rð Þ = −Jσ + 2Jω +
1

8μ2c2
�
−ℏ2

dJσ
dr

d
dr

� �
+ 1
r
dJσ
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ − S S + 1ð Þ½ �
" #

+ 4ℏ2 dJω
dr

d
dr

� �
− 2 2

r
dJω
dr

"
ℏ2

2 J J + 1ð Þ − L L + 1ð Þ½

− S S + 1ð Þ�
#
+ 1
4μc2

"
Jσ rð Þ p

!2

2μ

 !
− 2Jω rð Þ p

!2

2μ

 !

+ 4Jω 2S
!

S
!
+ 1

� �
− 3

� � 2
ℏ2

S
!
:n̂

� �2
− 1


 �
p
!2

2μ

 !

+ 4 2
ℏ2

S
!
:n̂

� �2
− 1


 �
p
!2

2μ

 !
Jω 2S

!
S
!
+ 1

� �
− 3

� �#

+ 2 1
Mc2

"
−2 2S

!
S
!
+ 1

� �
− 3

� �
Jω rð Þ


 2
ℏ2

S
!
:n̂

� �2
− 1
�

p
!
R

2

2M

 !
+ p2R

2M


 �
Jσ +

p2R
2M


 �
Jω

#
++ 1

4m2c2

�
�
−Jπ 2 S

!
:n̂

� �2

p2 + Jπp

2 − 2ℏ2 2S
!

S
!
+ 1

� �
− 3

� �
� dJπ
dr

d
dr

− 2 S
!
:n̂

� �2
p2 Jπ + p2 Jπ

�
:

ð32Þ
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The wave functions of the two nucleons of Equation (28)
should be treated as follows:

ϕα rið Þϕγ rj
� �D ���

= 〠
mlα

msα

〠
mlγ

msγ

lαsαmlα
msα

∣ jαMα

� �
lγsγmlγ

msγ
∣ jγMγ

� �
� ϕnα lαmlα

rið Þϕnγ lγmlγ
rj
� �D ��� χ1/2

msα
χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���:
ð33Þ

See Appendix B to have the final formula.

ϕα rið Þϕγ r j
� �D ���

= 〠
mlα

msα

〠
mlγ

msγ

〠
JM

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
T

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
lαlγmlα

mlγ
∣ λμ

� �
� nαlαnγlγ ∣NLnl
� 	

lSmlmS ∣ JMð Þ LlMm ∣ λμð Þ
� sαsγmsα

msγ
∣ SMs

� �
χαχγTαTγ ∣ TMT

� �
� ϕNLM Rð Þϕnlm rð Þh j χ1/2

msα
i, jð Þ

D ��� P̂T i, jð Þ� ��:
ð34Þ

The bracket hnαlαnγlγ ∣NLnli represents the Talmi-
Moshinsky bracket. The same treatment for the ket part jϕβ
ðriÞϕδðr jÞi to have

ϕβ rið Þϕδ r j
� ���� E

= 〠
mlβ

msβ

〠
mlδ

msδ

〠
JM

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
T

lβsβmlβ
msβ

∣ jβMβ

� �
� lδsδmlδ

msδ
∣ jδMδ

� �
lβlδmlβ

mlδ
∣ λμ

� �
� nβlβnδlδ ∣NLnl
� 	

lSmlmS ∣ JMð Þ LlMm ∣ λμð Þ
� sβsδmsβ

msδ
∣ SMs

� �
χβχδTβTδ ∣ TMT

� �
� ϕNLM Rð Þϕnlm rð Þj i χ1/2

msβ
i, jð Þ

���� ����P̂T i, jð Þ

:

ð35Þ

We have the wave function ϕNLMðRÞ = RNLMðRÞYNLMðϑ, φÞ
as radial part ðRÞ and angular part ðYÞ for center of mass
coordinates, the wave function ϕnlmðrÞ = RnlmðrÞYnlmðϑ, φÞ
as radial part ðRÞ, and angular part ðYÞ for relative coordi-
nates. For the two-nucleon interaction formula through the

exchange of four mesons where p
!
ij = p

!
and A is the mass

number of the required nuclei, we define the bracket hχs
ms

ði, jÞ ∣ χs
ms
ði, jÞi = 1, hP̂Tði, jÞ ∣ P̂Tði, jÞi = 1 and hYNLMYnlm ∣

YNLMYnlmi = 1 as the terms of equation depend on ðrÞ.
We have the formula of radial wave function which

involves the length parameter b =
ffiffiffiffiffiffiffiffiffiffiffi
ℏ/mω

p
with angular fre-

quency ω: and the associated Laguerre polynomial Ll+1/2n .

Rnl =
2n!

Γ n + l + 3/2ð Þ
� �1/2 1

b


 �3/2 r
b

� �l
� exp −1

2
r
b

� �2
 �
Ll+1/2n

r
b

� �2
:

ð36Þ

The differentiation of Radial function equals

d
dr

Rnl rð Þ = l
r
Rn,l −

r

b2
Rn,l −

2r
ffiffiffiffiffi
n′

p

b2
Rn−1,l+1: ð37Þ

Define the operator S
!
:n̂ [38] as

S:n̂ð ÞYLS
JM ϑ, φð Þ

= −ℏ
2

"
J + L + S + 2ð Þ J + L + S + 1ð Þ J − L + Sð Þ −J + L + S + 1ð Þ

2L + 1ð Þ 2L + 3ð Þ

 �1/2

YL+S
JM ϑ, φð Þ

+ J + L + S + 1ð Þ J + L − Sð Þ J − L + S + 1ð Þ −J + L + Sð Þ
2L − 1ð Þ 2L + 1ð Þ


 �1/2
YL−S

JM ϑ, φð Þ
#
:

ð38Þ

The meson degrees of freedom have some static functions
Jk for description, but here we choose GY and SPED for
meson k and ðk = π, σ, ω, ρÞ.

Jkð ÞGY = gkℏc
exp −μkrð Þ

r
−
exp −λkrð Þ

r
1 + λ2 − μ2k

2λk
r

 ! !
,

ð39Þ

where the meson-nucleon coupling constant g2k, the cut-off
λk, and the mass of the meson are associated with μk =mc/
ℏ. The second function has the form [24]

Jkð ÞSPED = gkℏ
λ2k

λ2k − μ2k

 !
exp −μkrð Þ

r
−
exp −λkrð Þ

r


 �
:

ð40Þ

5. Theoretical Analysis of CDP

There is an explicit spin dependence for the instanton inter-
action unlike one-gluon exchange, and it contains a projector
on spin S = 0 states. The distribution of this interaction rep-
resented with δð r!Þ replaced by a Gaussian function with
range Λ.

δ rð Þ = 1
Λ3

1
π3/2 exp −r2

Λ2


 �
, ð41Þ

where Λ is the range of the pairing force (QCD scale param-
eter).

VI rð Þ = 8
g

ffiffiffi
2

p
g′ffiffiffi

2
p

g′ 0

 !
δ rð Þ, ð42Þ
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where g and g′ are two dimensioned coupling constants
according to quark flavors. This equation is under condition
of ðl = s = 0, I = 0Þ, where l, s, and I denote angular momen-
tum, spin, and isotopic spin quantum numbers, respectively,
for n�n pair, and the form of instanton contributions repre-
sents as [41]. The pairing force depends on the value of the
parameters g and g′, if we set g for strange flavor with sym-
bol s and g′ for nonstrange flavor with symbol n. The Ham-
iltonian contains diagonal parts in the isoscalar space
ð∣n�ni, ∣s�siÞ.

H =
〠
3

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
!

i

2 +m2
i

q
0

0 〠
3

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
!
i

2 +m2
i

q
0BBBBB@

1CCCCCA
+ 1
2

−k
r

+ ar + C
� � 1 0

0 1

 !
+VI r!

� �
,

ð43Þ

having the coupling constant as

g′ = 3
8geff nð Þ: ð44Þ

The parameter geff denotes the strength and is defined as
[16]

geff =
4
3π

2

 �2ðρc

0
dρdo ρð Þρ2 × mo

i − ρ2ci
� �

, ð45Þ

where doðρÞ is a function instanton density of the instanton
size ρ. For three colors and three flavors, this quantity is given
in [16], mo

i is the current mass of flavor i, and the quark con-
densate for this flavor is ci = ð2/3Þπ2h�qiqii, h�qiqii (nonvanish-
ing expectation values). The integration over ρc which is the
maximum size of the instanton is

do ρð Þ = 3:63 × 103
� � 8π2

g2 ρð Þ

 �6

exp 8π2

g2 ρð Þ

 �

, ð46Þ

where

8π2

g2 ρð Þ

 �

= 9 ln 1
Λρ


 �
−
32
9 ln ln 1

Λρ


 �
 �
: ð47Þ

The constituent masses are the renormalization of
quarks’ masses which demonstrate the contribution of the
constituent masses [16].

mn =mo
n + Δmn + δn: ð48Þ

mo
n is the current mass of nonstrange quark, and Δmn is

the contribution of constituent mass [13] with free parameter

δn added to the running masses. The contribution of the con-
stituent masses has the following formula.

Δmn =
3
4π

2
ðρc
0
dρdo ρð Þρ2 mo

n − ρ2cn
� �

mo
s − ρ2cs

� �
: ð49Þ

It is important to replace the dimensional instanton size
[14] as x =Λρ with a dimensionless quantity with using the
definition of doðρÞ.

αn xcð Þ =
ðxc
0
dx 9 ln 1

x


 �
−
32
9 ln ln 1

x


 �
 �� �6
xn ln 1

x


 �� �−32/9
:

ð50Þ

This dimensionless integration should still have small
value of lnln-term. It is involved in the parameters g′ and
Δmn.

g′ = δπ2

2Λ3 mo
nα11 xcð Þ − cn

Λ2 α13 xcð Þ
� �

,

Δmn =
δ

Λ
mo

nm
o
sα9 xcð Þ − cnm

o
s + csm

o
n

Λ2 α11 xcð Þ + cncs
Λ4 α13 xcð Þ

� �
:

ð51Þ

In the functions α9ðxcÞ, α11ðxcÞ, α13ðxcÞ given in [14], the
mo

s is the constituent mass of strange flavor and also the cs is
the quark condensate related to the strange flavor. It is sup-
posed that the quark as an effective degrees of freedom is
dressed by the gluon and quark-antiquark pair clouds (con-
stituent masses), and it is natural to express the probability
density of quark configuration as a Gaussian function around
its average position.

ρi rð Þ = 1
γi

ffiffiffi
π

p� �3/2 exp −r2

γ2i


 �
, ð52Þ

where ρiðrÞ is the probability density not the instanton size as
previous with γi the size parameter, and it is dependent on
the quark mass flavor (n for nonstrange flavor and s for
strange flavor). The operator for the quark in positions r1
and r2 is replaced by effective one after double convolution
of the bare operator with the density functions ρi and ρj. This

can be performed by using the dressed expression ~OijðrÞ of
the bare operator OijðrÞ which depends only on the relative
distance rij = ri − rj between quarks [13].

~Oij =
ð
drOij r′

� �
ρij rij − r′
� �

: ð53Þ

The convolution procedure supposed to remain the cen-
ter of mass fixed during it and that the ρij tends to a delta
function at the limit of an infinitely large γij [42].

8 Advances in High Energy Physics



~δ rð Þ = 1

γij
ffiffiffi
π

p� �3 exp −r2

γ2ij

 !
: ð54Þ

This formula resembles the previous form of the proba-
bility density of Gaussian form, but with parameter γij. The
convolution (a function derived from two given functions
by integration that expresses how the shape of one is modi-
fied by the other) of two Gaussian functions with size param-
eter γi and γ j is also a Gaussian function. After convolution
with the quark density, the Cornell-dressed potential has
the following form:

~VC rð Þ = −k
erf r/γij
� �
r

+ ar
γij exp −r2/γ2ij

� �
ffiffiffi
π

p
r

24
+ 1 +

γ2ij
2r2

 !
erf r

γij

 !35 + C,

ð55Þ

with the error function erf and γij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i + γ2j

q
, where γi = 1

/ðγi
ffiffiffi
π

p Þ3/2 exp ð−r2/γ2i Þ and γj = 1/ðγi
ffiffiffi
π

p Þ3/2 exp ð−r2/γ2i Þ.

6. Results and Discussion

Table 1 represents the group of parameters used for ðπ, σ, ω
, ρÞ mesons. The sets of parameters are I and II that include
mass of meson, the coupling constant ðgÞ, and the cut-off
parameter ðλÞ.

The parameters listed in Table 2 is related to the quark-
quark potential through the CDP which is added to the
nucleon-nucleon potential in the hybrid model.

The two-body force is a simple model to reveal the hidden
physics of the atomic systems and also the nuclear systems.
Our work boils down to simple fact of constructing more real-
istic model that contains all possible degrees of freedom in
some light nuclei such as deuteron 2H1 and helium 4H2. So,
we include the interaction between two baryons which is
bounded in a hadron, and each baryon contains three
bounded quarks. The nucleon-nucleon interaction is well
introduced by the exchange of mesons with the OBE model.
At long range of this interaction, it is supposed to be due to
the exchange of pion-meson (pseudoscalar meson) followed
by the effect of scalar meson ðσÞ in attractive attitude at the
medium range. The attractive behavior has to face an opposite
behavior to maintain the stability of nuclei, so the short range
of this interaction is affected by a repulsive behavior due to the
exchange of vector mesons such as ðω, ρÞ and QCD effects.
The potential is elaborated to calculate the ground-state ener-
gies for the 2H and 4He nuclei. We have examined the OBEP
to calculate the ground-state energy of 2H and 4He nuclei
using two static meson functions (GY and SPED) with two sets
of parameters listed in Table 1 which shows the different sets
of the used parameters and for different exchange mesons, ð
σ, ωÞ mesons, ðπ, σ, ωÞ mesons, and ðπ, σ, ω, ρÞ.We have
mentioned that there is an effect of QCD at the short range
of nucleon-nucleon interaction via three bounded quarks

interacted between each other. The so-called Funnel potential
or Cornell potential is simple and the best model for the
description of Charmonium system, but in our hybrid model
without coupling between mesons and quarks, it gives too
high values and the effect of our model is a destructive one.
When we tried to apply the idea of hybrid model with the
aid of the instanton-induced interaction, it really gives us a
transition probability for the interaction of quark-quark inter-
action in small scale comparing with the confinement scale. It
is indeed similar to the tunneling effect with possibility of
treating the instanton interaction as a field configuration
between quarks and antiquarks in the ground states. This
interaction is also applied on the light quarks not only the
quark-antiquark. So, it is useful for us in our model as the pro-
ton or neutron is a hadron of three light quarks.

The instanton interaction is included in the CDP, giving
us a small value ranged between −0:15MeV in the case of 2H
and −0:25MeV in the case of 4He around the boundaries of
the hadron. Our results are shown in Tables 3 and 4 with
the effect of CDP with parameters of Table 2 besides the
exchange of mesons through OBEP. Generally, the effect is
encouraged, and it improves the ratios for the ground-state
energies of the deuteron and helium nuclei in all cases with
different parameters of meson degrees of freedom and differ-
ent functions GY and SPED.

We have determined the ratio (Rat) to ensure the accuracy
between the calculated results and the experimental data.

Rat = Etheor
Eexp:

, ð56Þ

Table 1: The meson parameters for OBEP for different sets [43].

Ref Meson
Mass
MeV

Coupling
constant gi/4π

Cut off parameter
λ MeV

Set I [43]

π 138.03 14.9 2000

σ 700 16.07 2000

ω 782.6 28 1300

ρ 769 1.7 1100

Set II [43]

π 138.03 14.40 1700

σ 710 18.37 2000

ω 782.6 24.50 1850

ρ 769 0.9 1850

Table 2: The quark parameters for the instanton-induced
interaction with the CDP [14].

Parameters Unit Values in baryon

a GeV2 0.16803

K 0.79801

C GeV -0.96701

mm GeV 0.378

yn GeV−1 0.68101
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where Etheor is the calculated ground state and Eexp the exper-
imental one. We can also determine the binding energy per
nucleon B:E/A for the studied nuclei as [48]

B:E
A

= −
Eg:s:

A
, ð57Þ

where the mass number is A and the total ground state energy
is Eg:s:. The results of the OBEP are listed in Tables 5 and 6 in

comparison with other theoretical and experimental data. The
ratio between the present work and experimental one is esti-
mated for both cases, in other words by using the potential
extracted from GY and SPED functions.

At first, the OBEP depended on the cancelation of σ
meson and ω meson, and the results are satisfied for the
ground-state energies of 2H nucleus as in Table 5 with two
different sets of meson s’ parameters; but here, we also tried
to include the OBEP through the exchange of three mesons
ðπ, σ, ωÞ and four mesons ðπ, σ, ω, ρÞ, and the results are

Table 3: The ground-state energy of deuteron with the hybrid model related to quark and meson degrees of freedom.

Parameter sets [43]
Meson
exchange

Hybrid
(GY+CDP)

Hybrid
(SPED+CDP)

Exp. [44–46] Ratio GY+CDP Ratio SPED+CDP
B:E/A
GY+CD

B:E/A
SPED+CDP

I
σ, ωð Þ -3.066 -2.191 1.3785 0.985 1.533 1.096

II -2.496 -2.123 1.122 0.955 1.248 1.0615

I
π, σ, ωð Þ -2.349 -2.398 -2.224 1.056 1.078 1.175 1.199

II -2.318 -2.354 1.042 1.058 1.159 1.177

I
π, σ, ω, ρð Þ -2.277 -2.317 1.024 1.042 1.138 1.158

II -2.027 -2.529 0.911 1.1371 1.033 1.264

Table 4: The ground-state energy of helium with the hybrid model.

Parameter sets [43]
Meson
exchange

Hybrid
(GY+CDP)

Hybrid
(SPED+CDP)

Exp. [47] Ratio GY+CDP Ratio SPED+CDP
B:E/A

GY+CDP
B:E/A

SPED+CDP

I
σ, ωð Þ -22.622 -20.488 1.1089 1.0043 5.655 5.122

II -23.001 -21.806 1.1275 1.0689 5.750 5.541

I
π, σ, ωð Þ -22.887 -20.625 −20:4 ± 0:3 1.1219 1.0110 5.7217 5.156

II -22.121 -20.587 1.084 1.0091 5.530 5.147

I
π, σ, ω, ρð Þ -19.905 -19.9888 0.9757 0.9798 4.976 4.997

II -19.6244 -21.0417 0.9619 1.03145 4.906 5.260

Table 5: The ground-state energy of 2H nucleus based on OBEP.

Parameter sets [43] Meson Present work (GY) Present work (SPED) Others Exp. [44–46] Ratio GY Ratio SPED
B:E/A
GY

B:E/A
SPED

I
σ, ωð Þ -2.916 -2.041 -2.215 1.311 0.918 1.458 1.0205

II -3.486 -1.973 [49] -2.224 1.567 0.887 1.743 0.987

I
π, σ, ωð Þ -2.199 -2.248 0.989 1.011 1.099 1.124

II -2.168 -2.204 0.975 0.991 1.084 1.102

I
π, σ, ω, ρð Þ -2.127 -2.167 0.9563 0.974 1.063 1.084

II -1.877 -2.379 0.8438 1.069 0.938 1.189

Table 6: The ground-state energy of 4He nucleus through OBE.

Parameter sets [43] Meson Present work (GY)
Present work

(SPED)
Others [50] Exp. [47] Ratio GY Ratio SPED

E/A
GY

E/A
SPED

I
σ, ωð Þ -22.372 -20.238 1.0966 0.992 5.593 5.0595

II -22.751 -21.556 -21.385 -20:4 ± 0:3 1.115 1.057 5.6877 5.389

I
π, σ, ωð Þ -22.637 -20.375 1.109 0.999 5.659 5.0937

II -21.871 -20.337 1.072 0.997 5.4677 5.08425

I
π, σ, ω, ρð Þ -19.655 -19.7388 0.9497 0.9675 4.9137 4.9347

II -19.3744 -20.7917 0.9497 1.0192 4.8436 5.1979
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listed in Table 5 with two static functions for the meson: GY
and SPED functions. The preferable value of deuteron ground
state is in the case of using three mesons by using SPED func-
tion for parameter I. It is noticed that the case of exchange
three mesons gives closer value than the case of exchange of
four mesons, demonstrating the effect of πmeson as an attrac-
tive one to be clear than the effect of ρmeson. This behavior is
reasonable for light nuclei.

The 4He nucleus has the same manner as the 2H nucleus
with preferable values ranged from 20.1 to 20.7, and that is
listed in Table 6.

The ratio is getting a better result for going on more mas-
sive nuclei and encouraged for our potential. The calculation
of binding energy per nucleon serves our idea of being the
OBEP with three and four mesons in the case of SPED func-
tion and gives satisfied values for deuteron and helium nuclei
comparing with the experimental one as it is for deuteron B
:E/A = 1:112 and for helium is B:E/A ≃ 5:1.

Tables 3 and 4 have the effect of adding quark degrees of
freedom to the meson degrees of freedom in a hybrid model
for all previous cases, The values are reasonable and the best
value of the hybrid model with the exchange of four mesons
in the case of parameter II for 2H nucleus when we apply the
GY function than others. The results are different for 4He
nucleus, and we have the value of SPED function with the
exchange of two and three mesons in the hybrid model with
the parameter I to be the preferred one. It is obvious from
Tables 3 and 4 the ground energy is close to the data in the case
of SPED function for set I and set II in comparison with the
experimental data. The 4He nucleus has little different man-
ner, and the theoretical values of the hybrid model are more
cleared than in 2H nucleus. It is noticed that the quark-
quark interaction improves the values with GY function. We
concluded that the used model is well-defined and compatible
with the data and even than other models (see [51, 52]).

7. Conclusion

In the framework of quasi-relativistic formulation, the meson
exchange potential helps in obtaining a potential with few
number of parameters to calculate the ground state for the
light nuclei deuteron and helium using two ðσ, ωÞ, three ðπ,
σ, ωÞ, and four ðπ, σ, ω, ρÞ meson exchanges. In addition, it
was shown that a self-consistent treatment of the semirelativis-
tic nucleon wave function in nuclear state has a great impor-
tance in calculations. The difference in masses of σ and ω
mesons would not seriously change the main aspect of the
concept of relativistic or semirelativistic interaction, providing
an average potential of cancelation of the repulsive meson ðωÞ
and the attractive meson ðσÞ in conjunction with a weak long-
range effect ðπÞ. The work with OBEP in Dirac-Hartree-Fock
equation gives a close relationship to other recent approaches,
based upon different formalisms which tended to support this
direction. The nuclear properties are being clear in our trail to
include more two mesons to describe the NN interaction
through our potential. The SPED function has a good ability
to give us the better shapes of our potential and also better
values for energies. We hope that our potential represents a
base for NN interaction with different ranges of energies in

the following search. The ground-state energies for 2H and
4He nuclei are successfully determined through this work and
give us a hope to continue with more massive nuclei. The
QCD model is based on one-gluon exchange process besides
the interaction of instanton that supplemented the confine-
ment. The Cornell-dressed potential represents the interaction
between quarks through the exchange of pseudoscalar mesons
(instantons) under controlling of one-gluon exchange process.
Our semirelativistic hybrid model is encouraged for light
nuclei, and the instanton-induced interaction caused to con-
struct a link of quark-quark interaction to the nucleon-
nucleon interaction for small scale around the hadron bound-
aries. The effect of adding the QQ interaction on the ground-
state energies is ranged from 6:7 for 2H nucleus to 1:2 for
4He nucleus; this is a small effect, and it is expected to be van-
ished for massive nuclei.

Appendix

A. Kinetic Energy

We deal with the kinetic energy as a relative kinetic energy
Tij which is related to the relative momentum pij = 1/2ðp1
− p2Þ with the momentum of the first nucleon p1 and
momentum of the second nucleon p2, and the center-of-
mass momentum pR = p1 + p. Therefore, the relative kinetic
energy has the formula

Tij = Ti − Tc:m =〠
i

p2i
2m −

∑ipið Þ2
2mA

=〠
i

p2i
2m −

1
2mA

〠
i

p2i +〠
i<j
2pipj

" #

=〠
i

p2i
2m −

1
2mA

〠
i

p2i +〠
i<j

p2i + p2j − 4p2ij
� �" #

=〠
i

p2i
2m −

1
2mA

〠
i

p2i + A − 1ð Þ〠
i

p2i − 4〠
i<j
p2ij

" #

=〠
i

p2i
2m −

1
2mA

A〠
i

p2i − 4〠
i<j
p2ij

" #
= 2
mA

〠
i<j
p2ij,

ðA:1Þ

where Ti is the kinetic energy of particles in the system, Tc:m
is the kinetic energy of the center-of-mass effect, m is the
mass of the nucleus, and A is the mass number of nucleus.

B. Wave Function with the Clebsch-
Gordan Coefficient

The wave functions for two nucleons i and j have a form with
Clebsch-Gordan coefficients.

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
� ϕnαlαmlα

rið Þϕnγlγmlγ
r j
� �D ���

� χ1/2
msα

χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���,
ðB:1Þ
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where ðlÞ is the orbital angular momentum, sγ is the spin, the
total angular momentum jα = lα + sα, jγ = lγ + sγ, and Mα =
mlα

+msα
in which mlα

is the projection of orbital quantum
number, msα

is the projection of spin quantum number, Mγ

=mlγ
+msγ

, and P̂Tα
is the function of isotopic spin. The

two wave functions are not connected and depend on ri, rj,
so the two wave functions need to be connected.

ϕα rið Þϕγ rj
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
λμ

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
lαlγmlα

mlγ
∣ λμ

� �
� ϕnα lαmlα

rið Þϕnγ lγmlγ
rj
� �D ��� χ1/2

msα
χ1/2
msγ

D ���
� P̂Tα

P̂Tγ

D ���:
ðB:2Þ

With λ = lα + lγ and μ =mlα
+mlγ

, we can change the spe-

cial coordinates for each wave functions to become one wave
that depends on relative mass and center of mass.

ϕα rið Þϕγ rj
� �D

∣ = 〠
mlα

msα

〠
mlγ

msγ

〠
λμ

〠
nlNL

lαsαmlα
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∣ jαMα
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� lγsγmlγ
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lαlγmlα

mlγ
∣ λμ

� �
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msα
χ1/2
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D ��� P̂Tα
P̂Tγ

D ���,
ðB:3Þ

where hnαlαnγlγ ∣NLnli is the Talmi-Moshinsky bracket, NL
is total center of mass, and nl is total relative. The wave func-
tion ϕNLnlðr, RÞ can be spitted in to the form

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
JM

〠
λμ

〠
nlNL

〠
mM

lαsαmlα
msα
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P̂Tγ

D ���:
ðB:4Þ

As L gives the total orbital quantum number in center of
mass, l gives the total orbital quantum number in relative
coordinates and S = si + sj is the total spin. Relative to the
spin functions and isospin functions to be connected, we
have to use them as follows:

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
JM

〠
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〠
nlNL

〠
mM

〠
sms
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T
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� �
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� �
� lαlγmlα
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� �
nαlαnγlγ ∣NLnl
� 	
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� sαsγmsα

msγ
∣ SMs

� �
χαχγTαTγ ∣ TMT

� �
� ϕNLM Rð Þϕnlm rð Þ χ1/2

msα
i, jð Þ

D ��� P̂T i, jð Þ� ��,D
ðB:5Þ

with the isotopic spin Tproton = −1/2 and Tneutron = 1/2.
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