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Abstract: Gains and losses of large segments of genomic DNA, known as copy number variants
(CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to
inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic
and molecular methods with different detection capabilities to detect clinically relevant CNVs.
In this review, we summarize methodological progress from conventional approaches to current
state of the art techniques capable of detecting CNVs from a few bases up to several megabases.
Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs,
determining their functional effect on cellular and whole-body physiology remains a challenge. Here,
we provide a comprehensive list of databases and bioinformatics tools that may serve as useful
assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV
detection and interpretation.

Keywords: copy number variants; cytogenetics; molecular methods; bioinformatics tools; CNV
detection; CNV interpretation

1. Introduction

Among the least understood types of genetic variation are copy number variants
(CNVs), a class of unbalanced structural variants characterized by deletions, insertions,
duplications or even multiplications of DNA segments ranging in size from a few dozen of
bp up to several Mb. Currently, the lower limit for CNV length is 50 bps, but this value has
been gradually decreasing due to continuous methodological progress. The shift is mainly
due to an increased resolution of used methods, allowing for detection of a wider variety
of variant lengths and for an increase of CNV detection capacity (Figure 1). Considering
this remarkable shift and the fact that generally used distinguishing criteria are somewhat
vaguely defined, it has also been suggested that CNVs include a wider spectrum of variants.
However, for practical reasons, we will focus on the conventional concept of CNVs in
this review.

Pushing the limits of CNV detection revealed that they are widespread in human pop-
ulations with a 5–10% difference of genomic sequences between normal individuals [1–3].
As a significant aspect of our heterogeneity, CNVs may disrupt gene function or alter gene
dosage by direct gain or loss of coding sequences [4], but several indirect mechanisms
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including alteration of non-coding RNAs [5,6] and topologically associated domains [7]
have been described. Since these may affect the phenotype, CNVs may threaten the
ability to survive or, on the contrary, enhance chances of survival in disadvantageous
environments [8].
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Figure 1. Hallmarks in copy number variant (CNV) history. The 20th century saw a steady development of methods, which
finally allowed genome-wide, high-resolution CNV detection around the beginning of the 21st century.

CNVs are an important cause of genomic disorders with Mendelian inheritance,
and may also contribute to complex diseases with multifactorial etiology [9]. Since the
introduction of high throughput technologies for CNV detection, namely array-based
comparative genomic hybridization (aCGH) and massively parallel sequencing (MPS), the
number of novel variants is constantly increasing. However, a lot of detected CNVs are still
categorized as variants of uncertain significance (VUS) with unknown clinical impact [4],
suggesting a need for their reliable classification. Therefore, all available information has
been translated to the standards of interpretation and reporting of constitutional CNVs as
recently published by the American College of Medical Genetics and Genomics and the
Clinical Genome Resource [10]. However, the age of high throughput technologies comes
with an ever increasing amount of generated data. Researchers must continuously improve
bioinformatic softwares and decision support tools to help clinicians handle the problem.

2. Methods of CNV Detection

From conventional cytogenetic methods through hybridization- and PCR-based tech-
niques, up to MPS, CNV detection methods have been through a long evolution, affecting
several aspects of progress in CNV research (Figure 1). Cytogenetic techniques were the
first methods for CNV detection, based on visual inspection of chromosomes. Improve-
ments led to the gradual lowering of detection limits, from numerical anomalies of whole
chromosomes to CNVs of a few Mb in size. Introduction of molecular-biology methods,
especially hybridization followed by Southern-blotting, allowed detection of mid-sized
CNVs in the range of several kb. Later, amplification-based PCR methods together with
their modifications and a wide range of associated detection techniques brought analytical
resolution to single nucleotides, with upper limits of the detection range at hundreds of
kb or a few Mb. Completely new possibilities were introduced by housing molecular
hybridization techniques with cytogenetic methods and with microarray-based methods,
but also with the invention of MPS. The latter two allowed the analysis of the whole size
range of CNVs in single runs, at least theoretically, and in scales of whole genomes.

2.1. Cytogenetic Techniques and Their Most Common Modifications

Although chromosomes in plant and animal cells were first observed in the 19th
century [11], and CNVs were microscopically detected in Drosophila in the early 20th cen-
tury [12], it took the first half of the 20th century to assess the human diploid karyotype [13].
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This was finally allowed by several methodological improvements in karyotyping, leading
to an establishment of conventional cytogenetic techniques which are still in general use.
These include the use of cells cultured from the tested tissue, arresting of dividing cells in
metaphase by colchicine, treatment by a hypotonic solution to spread the chromosomes,
fixation of chromosomes on a glass slide for examination under a light microscope, and
subsequent counting and grouping of chromosomes according to their morphological
features [14]. A revolutionary step in human cytogenetics came with the introduction
of different chromosome banding techniques revealing specific chromosomal patterns,
including fluorescence-based Quinacrine banding (Q-banding) [15] and Giemsa staining
(G-banding) [16], which have become the most widely used banding methods. Following
the advent of cytogenetic and banding techniques, discoveries were quickly made with
regard to CNVs associated with human pathologies. However, karyotyping techniques
available in the 1960s only allowed detection of gross numerical and morphological abnor-
malities, because the resolution of light microscopes was limited to imbalances larger than
5 Mb.

Conventional cytogenetic techniques combined with molecular techniques such as
hybridisation led to the emergence of molecular cytogenetics, the main methods being
fluorescence in situ hybridization (FISH) [17] and comparative genomic hybridization
(CGH), both still requiring fluorescent microscopy [18]. FISH is based on hybridisation
of sequence specific fluorescently labelled probes with subsequent microscopic detection
of a given fluorescent signal that indicates the presence or absence of specific target DNA
sequences [17]. This technique has undergone several modifications, from single-event-
specific tests up to chromosome painting, making it possible to detect individual loci as
small as 10 kb [19]. Certain limitations of conventional cytogenetics and FISH, mainly those
of resolution, led to the development of CGH for CNV detection [18]. By the comparison
of fluorescent signals generated from DNA of the tested and control samples, along the
chromosomes to which they were hybridised, CGH is capable of identifying increased or
decreased copy numbers of sequences at least ~3–10 Mb in size [20].

2.2. Methods of Molecular Biology

Molecular-biology methods such as Southern blot hybridization offer higher resolution
than cytogenetics [21]. The principle of Southern blotting relies upon fragmentation of
DNA with a restriction endonuclease and separating fragments by gel electrophoresis. The
fragments are transferred to a membrane and hybridized to appropriate probes. Copy
number changes are visible as differential hybridization intensities or as altered mobility of
the fragments. Although for many years, Southern blotting was the standard method for
the detection of deletions or amplifications in the range of 5–500 kb [22], it is a laborious,
time-consuming method that requires large amounts of high-quality DNA [23].

A tremendous improvement in the screening of CNVs came with the introduction
of microarray-based methods, specifically in conjunction with comparative genomic hy-
bridization, where DNA samples extracted from the tested and reference cells are cohy-
bridized to an array of fixed oligonucleotide probes instead of metaphase chromosomes [24].
The aCGH provides genome-wide coverage at a much higher resolution of 10–25 kb [25] or
even >500 bp if high-density arrays are used [26]. Despite some limitations in resolution
and accuracy, this made aCGH a standard in CNV detection [27].

PCR-based methods may either come in the form of conventional two- or three-primer
based protocols or multiplexed assays. CNVs may be detected by PCR-based protocols
through the change of: (i) migrational properties during agarose gel or other types of
electrophoresis [28]; (ii) amplification cycles required to achieve a relative threshold fluores-
cent intensity in real-time quantitative PCR (qPCR) assays [29,30]; (iii) relative fluorescent
signal intensities in capillary electrophoresis when using quantitative-fluorescent PCR (QF-
PCR) [31] or multiplex ligation-dependent probe amplification (MLPA) techniques [32];
(iv) denaturation properties reflected in melting temperatures or melting curve shapes
during conventional or high-resolution melting analysis [33]. All of these methods are more
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or less convenient for the targeted detection of a limited number of CNVs in a relatively
wide range of length from tens of bp up to Mb and even whole chromosomes at low cost
and fast turnaround time [34]. However, each of these methods also has its own advantages
and limitations. A more recently introduced alternative to the traditional qPCR in CNV
detection is the droplet digital PCR (ddPCR). In this method, template DNA is diluted and
partitioned into thousands of nano-scale droplets of uniform volume, allowing for absolute
quantification of target copy numbers without the need for a standard assay, making results
easier to interpret and less error-prone than regular qPCR [35]. Another PCR-based method
is multiplex amplifiable probe hybridization (MAPH) using oligonucleotide probes that hy-
bridize to a specific region in the genome. Hybridized probes are amplified and the amount
of each amplification product is proportional to the copy number of the corresponding
sequence [36]. MAPH enables the sensitive detection of CNVs as small as 150 bp [37]. Even
more sensitive and easier to use is MLPA developed to determine the copy number of
multiple genomic DNA sequences (up to 60 probes) in a single reaction with resolution
from a single nucleotide difference. The probes hybridized to the sample DNA are ligated
and amplified, resulting in fragments of a unique length which can be separated and
quantified by capillary electrophoresis [32]. Therefore, MLPA is a cost-effective method
that can be performed with equipment present in most molecular biology laboratories.

Although the first generation of DNA sequencing (1GS) technologies, specifically
Sanger sequencing, was generally considered to be the gold standard in DNA diagnostics,
CNVs represent specific challenges not easily dealt with when using this method. Their
detectability strongly depends on the length and type of the CNV, as well as on its position
with regard to the used amplification primers (for more details on the possible effect of
CNVs on reliability, see the next subheading). Since 2005, when the first platforms of second-
generation sequencing (2GS) technology became available [38], methods based on MPS
have undergone several modifications, their cost ever on the decrease [39]. In current times,
2GS represents a valuable tool for clinical diagnostics and provides a sensitive and accurate
approach for the detection of the major types of genomic variations, including CNVs [40].
There are three main strategies for 2GS-based CNV analysis, namely whole-genome, whole-
exome, and targeted sequencing. Due to the limited length of DNA fragments sequenced
by 2GS sequencers, variation is detected by abnormalities in the affected areas using robust
statistical and bioinformatic processing [41]. Read-depth methods highlight regions with
an irregular number of sequenced fragments: a loss is seen as a lower, and a gain as a higher
than expected amount of a particular segment. Read-pair and split-read approaches analyze
fragments with discordant alignments of sequenced fragments, where portions of a single
fragment are aligned to unexpected sites in the reference genome. While the above methods
directly analyze reads mapped to the reference genome, assembly-based methods compare
longer sections of an individual’s genome, called contigs. This approach may reveal more
complex genome rearrangements, but genome assembly is computationally more intensive
and requires substantially higher capacity. Whole-genome sequencing combined with
sophisticated computational strategies improved CNV detection, allowing even base-pair
resolution of breakpoints [42]. On the other hand, whole-exome sequencing targets only
the protein-coding part of the genome. However, since most of the known disease-causing
mutations fall into this category, exome sequencing significantly reduces sequencing cost
in medical applications and is still sufficiently powerful. Moreover, targeted sequencing
provides a greater depth of coverage in regions of interest for an even lower cost [43].

Third-generation sequencing (3GS) technologies (e.g., single-molecule real-time se-
quencing [44] and nanopore sequencing [45]) bring promise for better characterization of
genomic structural variants due to longer reads [46] that can be more confidently aligned to
repetitive sequences, often mediating the formation of structural variants [47]. While both
microarray and 2GS techniques are based on complex laboratory procedures which require
several days to obtain results [48], nanopore-based 3GS provides pocket-sized, low-cost
devices that usually take from 24 to 48 h to run, with reads generated continuously, so data
can be used for processing and further analysis in real-time during the ongoing sequencing



Appl. Sci. 2021, 11, 819 5 of 16

process [45]. Moreover, the method can be combined with a rapid library preparation kit
capable of obtaining ready to sequence genomic DNA in 10 min. Data generated in the first
tens of minutes of a run are sufficient to detect large chromosomal alterations with a reso-
lution in the order of tens of Mb. Data produced in the first 6–12 h of a sequencing run can
be used to identify CNVs with an accuracy comparable to currently available array-based
methods, and are capable of predicting the allelic fraction of genomic alterations with
high accuracy [42]. The problem with CNV breakpoint identification often encountered
in PCR- or array-based methods can also be solved by breakpoint sequencing [49]. Using
3GS devices, it will soon be possible to perform a cost-effective high-resolution molecu-
lar karyotyping of the human genome within an hour from sample extraction, allowing
ultra-fast analyses in fields where time matters, such as precision oncology and prenatal
diagnostics [42].

When considering in silico tools to extract CNV genotype information from gen-
erated data, nearly all of the available methods have their dedicated commercial tools,
from cytogenetic karyotyping, through MLPA, up to aCGH. The bioinformatic tools for
processing MPS data are, however, still under intensive development and diversification
(Table 1). While both 2GS and 3GS are technically capable of detecting CNVs in a wide
range of length, not each size is identifiable using the same bioinformatics pipeline and
different variants may require differently suited tools [50]. To identify smaller structural
variations spanning several nucleotides, conventional variant callers, such as the GATK
HaplotypeCaller [51], are generally suitable, while large CNVs exceeding read lengths
are typically identified based on a disproportion of sequenced reads from the genomic
region of a particular CNV [52]. In conclusion, since each CNV detecting method has
its advantages and limitations, the choice for an appropriate technique depends on the
application, required resolution, available lab equipment, workload, and budget.

Table 1. Bioinformatic tools for detection of CNVs from next generation sequencing-based genomic data. Several tools are
capable of detection and annotation of CNVs at the same time (e.g., iCopyDAV, SG-ADVISER-CNV, DeAnnCNV), so they
are listed in the next table. WES (whole-exome sequencing); WGS (whole-genome sequencing).

Tool Description Operating System Availability Reference

Wisecondor
WisecondorX

A tool for detecting small sub-chromosomal and chromosomal
genetic CNV alterations in fetal DNA using low coverage
sequencing of maternal cfDNA. It allows less-invasive detection of
chromosomal CNV changes at a resolution comparable to
conventional cytogenetic analysis. Moreover, no re-sequence healthy
samples are needed for normalization.

Mac OS X
Linux

Free for
non-commercial

use
[53,54]

ExomeCNV

ExomeCNV is based on an algorithm using statistics of sequence
coverage and B-allele frequencies for CNV and loss of
heterozygosity estimation by mapping short sequence reads.
ExomeCNV was the first tool implemented to detect CNVs from
WES data.

MS Windows
Mac OS X

Linux

Free-software
license [55]

SAvvyCNV
A tool that uses off-target or non-target reads data from targeted
panel and exome sequencing to call CNVs genome-wide.
SavvyCNV may call CNVs with high precision and recall.

MS Windows
Mac OS X

Linux

Free-software
license [56]

CopywriteR

A tool that can generate high-quality DNA copy number profiles
using off-target reads from targeted sequencing data. In addition,
CopywriteR allows extracting accurate copy number information
without a reference.

MS Windows
Mac OS X

Linux

Free-software
license [57]

DECoN

A fast and accurate tool for exon CNV detection from whole exons
in targeted panel analysis, capable of detecting small intra-exon
variants. It provides quality checks and visualization to make it
suitable for clinical use.

MS Windows
Mac OS X

Linux
Freely available [58]

CNVkit

A software toolkit for detection, analysis, and visualization of CNVs,
able to estimate CNVs and alterations genome-wide from
high-throughput sequencing data. It implements a pipeline for CNV
detection that takes advantage of both on- and off-target reads and
applies a series of corrections to improve copy number calling
accuracy.

Mac OS X
Linux

Free software
licence [59]
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Table 1. Cont.

Tool Description Operating System Availability Reference

Canvas SPW

Canvas SPW (Small Pedigree Workflow) is a tool for CNV calling
that serves to identify germline and de novo CNVs from pedigree
sequencing data. In addition, it infers genome-wide parameters
such as cancer ploidy, purity and heterogeneity.

MS Windows
Linux

Free-software
license [60]

MFCNV

A computational method that (i) considers the intrinsic correlations
among adjacent positions in the genome, (ii) calculates read depth,
GC-content bias, base quality, and correlation value for each genome
bin, and (iii) trains a neural network algorithm to predict CNVs.

NA Free-software
license [61]

VarScan 2

Analysis tool for the detection of somatic mutations and CNVs in
exome data from tumor-normal pairs. The algorithm reads data
from both samples simultaneously; a heuristic and statistical
algorithm detects sequence variants and classifies them by somatic
status (germline, somatic, or LOH); while a comparison of
normalized read depth delineates relative copy number changes.

MS Windows
Mac OS X

Linux
UNIX

Free for
non-commercial

use
[62]

ADTEx

ADTEx (Aberration Detection in Tumour Exome) is a method to
infer somatic CNVs and genotypes using WES data from paired
tumour/normal samples. The algorithm uses hidden Markov
models to predict CNV counts, genotypes, polyploidy, aneuploidy,
cell contamination, and baseline shifts.

Linux Free-software
license [63]

ReadDepth

An R package for inferring CNVs from short-read sequencing data.
The algorithm uses a statistical model that accounts for
overdispersed data and does not require reference sample data. It
includes a method for increasing the resolution from low-coverage
experiments by utilizing breakpoint information from paired end
sequencing to do positional refinement. For calling somatic CNVs
from matched tumor/normal pairs, the authors of ReadDepth
recommend a copyCat package that is loosely based on readDepth.

MS Windows
Mac OS X

Linux

Free software
licence [64,65]

CONDEL

CONDEL (CONsensus DELeteriousness) is a method for detecting
CNVs from single tumor samples using high-throughput sequence
data. It utilizes a novel statistic in combination with a peel-off
scheme to assess the statistical significance of genome bins, and
adopts a Bayesian approach to infer copy number gains, losses, and
deletion zygosity based on statistical mixture models.

MS Windows
Mac OS X

Linux
Freely available [66]

CNV_IFTV
A method that uses a novel isolation forest algorithm and
variation-based detection of CNVs from short-read sequencing data.
It is a reliable tool even for low-level coverage and tumor purity.

MS Windows
Mac OS X

Linux
Freely available [67]

Control-
FREEC

A tool for detection of copy-number changes and allelic imbalances
(including LOH) using deep-sequencing data. Control-FREEC
automatically computes, normalizes, and segments copy number
and beta allele frequency profiles, then calls CNVs and LOH. The
control sample is optional for WGS data but mandatory for WES or
targeted sequencing data.

MS Windows
Linux

Free software
licence [68]

EXCAVATOR
EXCAVATOR2

EXCAVATOR (EXome Copy number Alterations/Variations
annotATOR) a tool for the detection of CNVs from WES data
combines a three-step normalization procedure with a hidden
Markov model algorithm and a calling method that classifies
genomic regions into five copy number states.
EXCAVATOR2 is an enhanced version of EXCAVATOR. It is a read
count based tool that exploits all the reads produced by WES
experiments to detect CNVs with a genome-wide resolution.

Mac OS X
Linux Freely available [69,70]

XCAVATOR
A software package for the identification of genomic regions
involved in CNVs from short and long reads in whole-genome
sequencing experiments.

Mac
Linux

Free-software
license [71]

NA, not available. If applicable, operating systems for individual tools were collected from https://bioinformaticshome.com. If applicable,
availability/license information were collected from https://github.com or from the home page of individual tools.

2.3. Techniques Possibly Affected by the Presence of Undetected CNVs

In addition to detection possibilities, another aspect worth discussing is that certain
methods are at risk of giving inferior results due to the presence of undetected CNVs.
Such methods include Southern blotting and PCR as well as both 1GS and 2GS. PCR and
PCR-based sequencing methods are prone to allelic dropout caused by the presence of

https://bioinformaticshome.com
https://github.com
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deletions in the analyzed region, especially if affecting one of the primer binding regions,
or may falsely show hemizygous instead of homozygous alleles if the entire amplified
region is deleted. They may also be affected by the presence of false-positive variants, such
as unknown homologous copies of the analyzed region (e.g., pseudogenes or pseudoexons)
with high but not full sequence homology, like in the case of the CFTR pseudoexon 2 present
in the GRCh38, but not in earlier versions of the human reference genome [50].

Some of these effects may be prevented, eliminated, or at least attenuated in some
ways, depending on whether the presence of a certain CNV is expected or unforeseen.
These methods include but are not limited to: (i) checking the region of interest for specific
CNVs by an alternative technique (e.g., sequencing of single genes may be complemented
by MLPA, while sequencing of whole exomes and genomes may incorporate a CNV-specific
bioinformatic variant calling pipeline to complement conventional variant calling of small
variants); (ii) using two or more complementing assays based on different principles
and being liable to different biases; (iii) careful evaluation and reporting of results by
well trained users who are familiar with the used technique, including thorough quality
control and reporting only unambiguous findings truly supported by the results (for
example, not reporting variants as homozygous, when detected using sequencing with
PCR preamplification, unless other heterozygous variants in the same amplicon were not
detected, or until the possible presence of CNVs is checked); or (iv) at least by disclosing
the possible biases in the results.

3. Potential Biomedical Applications of CNV Detection

CNVs can be analyzed from different biological sources, offering various valuable
information, so there are plenty of biomedical applications where CNV detection may
be useful. CNVs have been studied in neuropsychiatric [72,73], developmental [74], and
cardiovascular diseases [75]. Several studies have identified the role of CNVs in common
diseases such as coronary artery disease or in rarer events such as sudden cardiac death.
Such findings may be useful for clinicians for disease classification and detection in the
future, particularly in the age of the whole genome sequencing [76].

On the other hand, CNVs have been identified as susceptibility factors for autoimmune
diseases such as systemic lupus erythematosus (SLE). The human C4 gene is one of the
most striking examples of genetic diversity, due to a great variation in number and size of
gene copies between individuals. Low copy numbers of the C4 and C4A gene are significant
risk factors for the development of SLE in different populations. Meta-analysis by Li et al.
showed that <4 copies of the C4 gene increase susceptibility to autoimmune diseases
with an odds ratio of 1.46 (95% CI, 1.19–1.78) [77]. In addition, C4A has been associated
with disease severity. Thus, determination of C4 gene copy numbers may be useful in
sub-phenotyping and managing SLE patients [78].

CNVs obtained from blood cells or tissues are suitable for the identification of germline
or somatic variants. Tissue biopsy is a well-established procedure in cancer diagnosis for
identification of human genomic alterations. However, this technique is invasive, time-
consuming, not sufficient to examine the entire tumor profile, and not applicable in the
follow-up of cancer treatment [79]. The current trend is moving towards non- or less-
invasive sampling, such as liquid biopsy [80]. In combination with whole-genome copy
number analysis, which does not require any prior knowledge about the characteristics of
the primary tumor genome, it represents a promising clinical tool. Heitzer et al. reviewed
approaches for analyses of somatic copy number alterations at a genome-wide scale [81].
Both circulating tumor cells (CTCs) and cell-free DNA (cfDNA) were shown to be powerful
sources in CNV profiling.

Ni et al. hypothesize that copy number changes are key events of metastasis. They
observed cancer-associated CNVs in exomes of CTCs revealing information needed for
individualized therapy, such as drug resistance and phenotypic transition and suggest that
CNVs at certain genomic loci have the potential for CTC-based cancer diagnostics [82]. Sev-
eral studies demonstrated that the detection of ALK gene rearrangement in non–small-cell
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lung cancer (NSCLC), a predictive biomarker for crizotinib treatment, may be performed
using CTCs. The same group also reported that CTCs can be used for sensitive detection
of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show
heterogeneity of ROS1 gene abnormalities and elevated numerical chromosomal instability,
suggesting a potential mechanism for resistance to crizotinib, a known ROS1-inhibitor [83].

Since tumor cells frequently undergo necrosis, they release tumor-specific cfDNA
(ctDNA) into body fluids such as blood, urine, saliva, etc. [84]. It was shown that quan-
tification of tumor-specific rearrangements in ctDNA by ddPCR is highly accurate for
postsurgical discrimination between patients with an eventual diagnosis of clinical metas-
tasis and long-term disease-free patients, with a sensitivity of 93% (95% CI, 66–100%) and
specificity of 100% (95% CI, 61–100%). Moreover, ctDNA-based detection preceded clinical
detection of metastasis in 86% of patients with an average lead time of 11 months, whereas
patients with long-term disease-free survival had undetectable ctDNA postoperatively [85].
Peng et al. presented a method enabling CNV detection from a 150-gene panel using a low
amount of ctDNA. They demonstrated that their CNV pipeline can detect EGFR, ERBB2,
and MET amplification from ctDNA samples with high specificity and concordance with
corresponding tissue-based whole-exome results. The concordance rate for EGFR, ERBB2,
and MET CNVs was 78%, 89.6%, and 92.4%, respectively [86]. The analysis of circulating
nucleic acids may also be helpful in other diseases. Since cfDNA biomarkers are known to
be important in many autoimmune and multifactorial diseases such as IBD [87], cfDNA
could also be used for studying CNVs in such disorders.

CNVs are also useful in the diagnostics of rare and common diseases or predisposi-
tions. This may be performed as prenatal testing through direct testing of the fetus or indi-
rectly using maternal blood. Detection of CNVs is a common part of modern non-invasive
prenatal testing (NIPT), most commonly based on low-coverage whole-genome sequencing
analysis of cell-free fetal DNA (cffDNA) from maternal plasma [88]. This approach is useful
for the detection of chromosomal aneuploidy and microdeletion syndromes, including
DiGeorge, Prader-Willi/Angelman, 1p36, Cri-du-chat, and Wolf-Hirschhorn syndrome [52].
Apart from fetal CNVs, maternal ones can also be detected by this method, although
current analyses generally do not interpret these findings. Maternal aberrations are poten-
tially harmful to the fetus, so some authors suggest reporting these variants if clinically
relevant. On the other hand, performing NIPT may lead to the incidental diagnosis of
maternal diseases, such as previously unrecognized pathologies, late-onset diseases and
predispositions arising from maternal germline CNVs, or malignancies and systemic au-
toimmune diseases presenting with somatic CNVs. Thus, these aspects of CNV detection
also affect conventional perception of incidental and secondary findings arising via genetic
testing, which are now extensively discussed [89]. Giles et al. reported that 80% of genetic
counselors recognized it would be beneficial to use NIPT for neoplasm screening, yet more
than 90% affirmed that guidelines are necessary to prepare for such situations [90].

CNV detection may also find application in the evaluation of the microbiome bal-
ance, through the analysis of CNVs in metagenomes in different body parts. The human
microbiome interacts with the host and plays an important role in many host biological pro-
cesses [91]. Host genomic variations influence the composition of the microbiome, which
in turn affects the health of the individual. While numerous studies have been focused on
associations between the gut microbiome and specific alleles of the host genome, gene copy
number also varies. It was shown, for instance, that duplication of the human AMY1 gene
is associated with an increased number of oral Porphyromonas in saliva, which is linked to
periodontitis. Gut microbiota of these individuals had increased abundance of resistant
starch-degrading microbes, produced higher levels of short-chain fatty acids, and drove
higher adiposity when transferred to germ-free mice [92]. This case demonstrated that even
seemingly harmless variants in the host genome could affect the health of an individual.

Current knowledge suggests that it is important to analyze CNVs not only in human
cells, but also in the microbiome. Taxonomic characterization of the human microbiota
is often limited to the species level, however, each microbial species represents a large
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collection of strains that may contain considerably different sets or copy numbers of genes
resulting in potentially distinct functional capacities. This intra-species variation is caused
by deletion and duplication events, which were shown to be prevalent in the human gut
environment, with some species exhibiting CNVs in >20% of their genes. This variability is
especially prevalent in disease-associated genes involved in important functions, such as
transport and signaling. A study by Greenblum et al. showed obesity to be associated with
higher copy numbers of thioredoxin 1 in Clostridium sp., an increased copy number of an
MFS transporter gene in the Roseburia inulinivorans genome cluster, and increased HlyD in
Bacteroides uniformis associated with IBD-afflicted individuals. According to the authors,
the analysis of species composition alone is not sufficient to capture the true functional
potential of the microbiome because it may fail to capture important functional differences,
so the analysis of intra-species variation in microbial communities is crucial [93].

4. Clinical Interpretation of CNVs

As detailed above, CNVs are an important source of normal and pathogenic variation.
Pathogenic CNVs are typically large and contain multiple genes, significantly enriched
in developmental genes and genes with greater evolutionary copy number conservation
across mammals. On the other hand, genes found in benign CNVs have more variable
copy numbers, suggesting that dosage sensitivity of genes is a predominant causative
factor for CNV pathogenicity [94]. In everyday practice, laboratory diagnosticians, genetic
counselors, and clinical geneticists need to distinguish pathogenic CNVs from benign
ones in their patients, and such interpretation can be challenging. Many recurring CNVs
are already classified into one of the five main classes of clinical impact (benign, likely
benign, VUS, likely pathogenic, and pathogenic), a uniformized system commonly used
for the interpretation of other sequence variants as well [95]. However, progress in the
detection of CNVs resulted in a growing amount of novel CNVs that need further analysis
to determine their potential clinical impact, while between the two clear extremes (benign
and pathogenic), a wide spectrum of CNVs lacking evidence to support their clinical
significance are classified as VUS [4]. This led to a demand for a more convenient annotation
and classification of such CNVs. Even though the prediction of the clinical impact of CNVs
is a challenge, there are several in silico prediction or decision support tools (Table 2) for
CNV classification to help laboratory diagnosticians, genetic counselors and clinicians [96].

Table 2. Decision support tools for annotation and/or classification of CNVs. SV (structural variation); WGS (whole-genome
sequencing); WES (whole-exome sequencing); TADs (topologically associated domains).

Tool Description Operating System Availability Reference

AnnotSV

A standalone program designed for annotating and ranking SVs.
The tool compiles functionally, regulatory and clinically relevant
information and aims at providing annotations useful to (i) interpret
the potential pathogenicity of SVs and (ii) filter out potential false
positives.

MS Windows
Mac OS X

Linux
Free-software

license [97]

iCopyDAV

Integrated platform for CNV detection, annotation and visualization
enabling the user to identify CNVs in whole-genome NGS data.
iCopyDAV consists of seven modules for (i) calculating optimal bin
size; (ii) data preparation; (iii) data pre-treatment; (iv) segmentation;
(v) variant calling; (vi) CNV annotation; (vii) plotting CNVs across
the chromosome.

Mac OS X
Linux Freely available [98]

AluScanCNV2
An R package for CNV calling and machine learning-based cancer
risk prediction with NGS data. It uses Geary–Hinkley
transformation-based comparison of the read-depth.

MS Windows
Mac OS X

Linux
Free-software

license [99]

CNVAnnotator

A web service that displays genomic overlaps of the input
coordinates with built-in databases of CNVs and SNPs from
genome-wide association studies and additional features such as
ENCODE regulatory elements, cytobands, segmental duplications,
genome fragile sites, pseudogenes, promoters, enhancers, CpG
islands, and methylation sites.

MS Windows
Mac OS X

Linux

Free access
Results are free to
academic research.

Not for profit
[100]
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Table 2. Cont.

Tool Description Operating System Availability Reference

cnvScan

A CNV screening and annotation tool to improve the clinical utility
of computational CNV prediction from exome sequencing data. The
screening step evaluates CNV prediction using quality scores and
refines it using an in-house CNV database. The annotation step uses
multiple external databases from three groups: gene and functional
effect datasets, known CNVs from public databases and clinically
significant datasets.

Linux Free-software
license [101]

CNspector

A web-based tool for the visualization and clinical diagnosis of
CNVs from NGS data. It represents a multi-scale interactive browser
that shows CNVs in the context of other relevant genomic features
to enable faster clinical reporting.

MS Windows
Mac OS X

Linux
Free-software

license [102]

CNView

A tool for normalized visualization, statistical scoring and
annotation of CNVs from population-scale WGS datasets having six
sequential steps: (i) matrix filtering, (ii) matrix compression, (iii)
intra-sample normalization, (iv) inter-sample normalization, (v)
coverage visualization, and (vi) genome annotation.

MS Windows
Mac OS X

Linux
Free-software

license [103]

SVScore

A VCF annotation tool that predicts the impact of SVs based on SNP
pathogenicity scores across relevant genomic intervals for each SV.
The tool assigns a very simple aggregate pathogenicity score to an
SV based on overlapping SNP pathogenicity scores. Multiple
options for aggregation are supported: maximum, sum, mean and
mean of the top N scores.

Linux Free-software
license [104]

SG-ADVISER-
CNV

A suite (consisting of an annotation pipeline and a Webserver) for
CNV detection and interpretation by performing in-depth
annotations and functional predictions for CNVs. The tool is
designed to allow users with no prior bioinformatics expertise to
handle large volumes of CNV data.

MS Windows
Mac OS X

Linux
NA [105]

ClinTAD

A browser-based tool for quick evaluation of the clinical relevance
of a CNV in the context of TADs. It allows to input a chromosome
number, genomic coordinates, and phenotypic information and
relate this data to nearby TAD boundaries and genes.

MS Windows
Mac OS X

Linux
Freely available [106]

CNVScope

A tool for CNV relationship data analysis and visualization,
allowing users to create interaction maps, discover CNV map
domains, annotate gene interactions, and create interactive
visualizations of these CNV interaction maps.

MS Windows
Mac OS X

Linux
Free-software

license [107]

DeAnnCNV

A tool for online detection and annotation of CNVs from WES data.
It can extract the shared CNVs among multiple samples and also
provides supporting information for the detected CNVs and
associated genes.

MS Windows
Mac OS X

Linux
Freely available [108]

ClassifyCNV

An easy-to-use tool that implements the 2019 ACMG classification
guidelines to assess CNV pathogenicity. It uses genomic coordinates
and CNV type as input and reports a clinical classification for each
variant, a classification score breakdown, and a list of genes of
potential importance for variant interpretation.

Mac OS X
Linux
UNIX

Free for academic
and research use

only
[109]

NA, not available. If applicable, operating systems for individual tools were collected from https://bioinformaticshome.com. If applicable,
availability/license information were collected from https://github.com or from the home page of individual tools.

It is essential to produce consistent, evidence-based clinical classification across labo-
ratories and accurate clinical interpretation of CNVs, which requires not only appropriate
methods to evaluate genomic content but also correlating clinical findings with reports in
the medical literature. To ensure this, existing standards for evaluating CNVs were recently
updated, and detailed recommendations for the interpretation and reporting of constitu-
tional CNVs were published [10]. These recommendations comprise a semiquantitative
point-based scoring system in which evidence categories with assigned relative weight
were determined. When evaluating individual CNVs, genomic content, dosage sensitivity,
predicted functional effect, clinical overlap with patients in the literature, evidence from
case and control databases (Table 3), and de novo occurrence or inheritance patterns are
considered [10]. Using this scoring system, any evaluated CNV should be assigned to one
of the five above mentioned main classes of clinical impact [95]. It was also demonstrated
that topologically associated domains, in which structural alteration results in various
malformations, may increase clinical suspicion of pathogenicity for variants of uncertain
significance. This piece of information, among others, may help in the clinical interpreta-

https://bioinformaticshome.com
https://github.com
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tion of CNVs that would otherwise be ignored based on current reporting criteria [106].
So, appropriate clinical interpretation relies on supporting evidence and, therefore, is still
challenging. An effective way of overcoming the problem of VUS and achieving progress
in clinical interpretation that may eventually translate to an improvement in patient health
care is to share data and relevant information between laboratories and researchers [110].

Table 3. Databases of common and clinically relevant genomic CNVs. The most popular databases that play a crucial role
in variant classification are listed here.

Database Abbreviation Description Link

ClinVar ClinVar
A freely accessible, public archive of reports of the relationships
among human variations and phenotypes, with supporting
evidence.

http://www.ncbi.nlm.
nih.gov/clinvar/

Database of genomic
structural Variation dbVar

NCBI’s database of human genomic structural variations with size
>50 bp including insertions, deletions, duplications, inversions,
mobile elements, translocations, and complex variants.

https://www.ncbi.nlm.
nih.gov/dbvar/

DatabasE of Chromosomal
Imbalance and Phenotype
in Humans using Ensembl
Resources

DECIPHER An interactive web-based database, which incorporates a suite of
tools designed to aid the interpretation of genomic variants.

https://decipher.
sanger.ac.uk

Database of Genomic
Variants DGV The database only contains structural variants identified in healthy

control samples.
http://dgv.tcag.ca/

dgv/app/home

The Genome Aggregation
Database gnomAD-SV

An open resource of structural variation for medical and
population genetics. The gnomAD structural variant (SV) callset is
available via the gnomAD website and integrated directly into the
gnomAD Browser.

https://gnomad.
broadinstitute.org

Catalogue of Somatic
Mutations in Cancer COSMIC

The world’s largest source of expert manually curated somatic
mutation information relating to human cancers. The database
combines two main types of data: manually curated high precision
data and genome-wide screen data, which provide extensive
coverage of the cancer genomic landscape from a somatic
perspective.

https://cancer.sanger.
ac.uk/cosmic

The International Genome
Sample Resource IGSR

The International Genome Sample Resource (IGSR) was established
to ensure ongoing usability of data generated by the 1000 Genomes
Project and to extend the data set.

https://www.
internationalgenome.

org/home

Autism Chromosome
Rearrangement Database ACRD

A collection of hand curated breakpoints and other genomic
features related to autism, taken from publicly available literature,
databases and unpublished data. The database is continuously
updated with information from in-house experimental data as well
as data from published research studies.

http://projects.tcag.
ca/autism/

The Chromosome
Anomaly Collection NA This collection contains examples of unbalanced chromosome

abnormalities without phenotypic effect.

http://www.ngrl.org.
uk/wessex/collection/

index.htm

Mitelman Database of
Chromosome Aberrations
and Gene Fusions in
Cancer

NA
The information in the database relates cytogenetic changes and
their genomic consequences, in particular gene fusions, to tumor
characteristics, based either on individual cases or associations.

https:
//mitelmandatabase.

isb-cgc.org

NA, not available.

5. Conclusions

In this work, we provide an overview of CNV detection methods, from basic cytoge-
netic methods to molecular-based approaches such as aCGH or MPS. Detecting CNVs in
individuals and within populations is essential to better understand our genome and to
elucidate its possible contribution to disease or phenotype. The growing availability of
sequencing technology can help to further explore these functional implications, but since
it can yield up to several terabytes of genomic data per run, it is not possible to unlock the
full potential of such data without the help of CNV-related bioinformatic tools. Despite
all the improvements in methodology and software, clinical interpretation of CNVs still
remains a major challenge. Moreover, due to improving resolution, the number of novel
structural variants is constantly increasing and this led to a demand for more convenient

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/dbvar/
https://www.ncbi.nlm.nih.gov/dbvar/
https://decipher.sanger.ac.uk
https://decipher.sanger.ac.uk
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://www.internationalgenome.org/home
https://www.internationalgenome.org/home
https://www.internationalgenome.org/home
http://projects.tcag.ca/autism/
http://projects.tcag.ca/autism/
http://www.ngrl.org.uk/wessex/collection/index.htm
http://www.ngrl.org.uk/wessex/collection/index.htm
http://www.ngrl.org.uk/wessex/collection/index.htm
https://mitelmandatabase.isb-cgc.org
https://mitelmandatabase.isb-cgc.org
https://mitelmandatabase.isb-cgc.org
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tools designed for storing, searching, annotating and evaluating CNV-related data to in-
crease practical value for researchers, laboratory diagnosticians and clinical geneticists
facing the challenging task of correctly interpreting the clinical impact of CNVs.
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