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ABSTRACT 
 

This study was conducted in selected industrial waste dump sites in the Kota district of Rajasthan, 
India to investigate the impact of various edaphic factors on spore density and root colonization of 
arbuscular mycorrhizal (AM) fungi. The current research shows that AMF root colonization rates 
were insignificantly negatively correlated with EC, soil temperature, P, K, Fe, Cu, Zn, and Mn but 
significantly positively correlated with soil pH, soil moisture, and insignificantly positively correlated 
with N and OC (P < 0.05). Spore density of mycorrhiza was insignificant and negatively correlated 
with soil moisture (P < 0.05), EC, soil temperature, P, K, Fe, Cu, Zn, and Mn but significantly 
positively correlated with soil pH and insignificantly positively correlated with N and OC.  
Edaphic factors may influence the root colonization and spore density of mycorrhiza differentially. 
Except for pH and soil moisture, almost all other parameters have a very insignificant influence on 
mycorrhizal root colonization and spore density in industrial wastelands. 
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1. INTRODUCTION 
 

Mycorrhiza are obligate symbiotic soil fungi that 
colonize the roots of the majority of plants 

forming an intricate network in the root cortex, 
regulating community and ecosystem 
functioning. An Arbuscular Mycorrhizal Fungi 
(AMF) is a type of mycorrhiza in which the 
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symbiont fungus penetrates the cortical cells of 
the roots of a vascular plant forming arbuscules. 
About 80% of land plants develop mutual 
associations with arbuscular mycorrhiza [1,2]. 
Many host plants are dependent on AMF [3] for 
their nutrition as they help the plant to acquire 
mineral nutrients from the soil [4] especially in 
nutrient-poor soil. Mycorrhiza plays important 
role in increasing nutrient uptake, notably 
phosphorus and zinc [5,6]. They also prevents 
soil erosion [7] through the formation of soil 
aggregates, building up a macrocarpous 
structure of soil that allows the penetration of 
water and air in the soil. Mycorrhiza help host 
plants by enhancing their resistance to root 
pathogens [8] and abiotic stresses, such as 
drought and metal toxicity [9,10]. They also 
improve plant growth by substantially increasing 
the absorption of water and nutrients by roots 
and increasing the availability as well as 
translocation of various nutrients [11,12]. AM 
fungi facilitate the exchange of various macro 
and micronutrients, like nitrogen, phosphorus, 
potassium, sulfur, calcium, copper, and zinc, 
from the soil at the cost of precious 
photosynthates when they are associated with 
host plant roots [13-15]. 
 

The major contributor to the dynamics of 
distribution and diversity of AM fungal species, 
root colonization, and spore population are soil 
physico-chemical parameters [16,17], especially 
the availability of mineral elements [18], pH [19] 
and electrical conductivity [20,21]. Several 
edaphic factors viz, texture and pH of the soil, 
organic matter, soil moisture, and levels of macro 
and micro-nutrients have been shown to affect 
root colonization, spore germination, and efficacy 
of AM fungi [22]. Climatic, as well as edaphic 
factors can substantially influence AM fungi and 
their populations, changes in soil nutrients may 
affect AM association with root and spore 

number [23]. Owing to its role in stress 
endurance, stress tolerance, and pathogen 
resistance mycorrhiza are considered to play 
important role in the conservation of biodiversity. 
Hence knowledge of the various factors that 
influences the population biology of AM fungi is 
essential in any attempt to use them in 
environmental conservation [24].  
 
Kota (24° 33’ and 25° 50’ N latitude and 75°37’ 
and 76° 31’E longitude) is located along the 
banks of the Chambal River in the south-eastern 
part of Rajasthan, India. The district covers an 
area of 527sqkm and is known as an industrial 
city in Rajasthan, with Kota Thermal power plant, 
DCM industries, and stone mining industry as 
major industries. Kota has fertile land with black 
soil and is the trade centre for coriander and 
building limestone “Kota Stone”. DCM Shriram 
Industries is a chemical industry that 
manufactures Caustic soda, Sodium 
Hypochlorite, Chlorine, Hydrogen, and 
Hydrochloric Acid. Kota Thermal Power Plant is a 
coal-based electricity generation plant situated 
on the banks of river Chambal whereas 
Limestone mines are present in the 
Ramganjmandi area of Kota. Non-industrial 
areas in the district are taken control. 
 
Previous studies have shown that mycorrhizal 
association and spore formation potential of AMF 
was significantly lowered in soil disturbed due to 
industrial waste dumping [25]. Industrial 
wastelands have many times enriched nutrient 
status or nutrient stressed conditions that are 
different from native undisturbed soil. The 
objective of this study is to examine the impact of 
various physico-chemical parameters of soil on 
mycorrhizal root colonization, and spore density 
in 3 different industrial wastelands in the Kota 
district of Rajasthan, India. 

  

 
 

Fig. 1. Map of the study area (Kota) showing control site and 3 experimental sites 
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2. METHODOLOGY 
 

Waste dumping sites nearby stone mines, Kota 
thermal power station and DCM Industries are 
selected for the sampling required for the study 
and non-industrial area with natural vegetation is 
taken as control site. Each site was at 
equidistance within the periphery of 5-6 km. In 
each site 3 sample plots (five replicates from 
each sample plot) were selected randomly from 
where soil and plant specimen were collected by 
random sampling method. For physico-chemical 
characterization of soil, approximately 1,000 g of 
soil samples were collected from rhizospheres of 
randomly selected plants in each sample plot of 
selected site. Soils were collected from 15 to 30 
cm depth, and were filled in sterile polythene 
bags and were brought to the laboratory and 
stored at 5°C–10°C. Each replicate of the soil 
sample was analyzed for physico-chemical 
characteristics, like pH, EC, soil moisture, soil 
temperature, macro-nutrients (N, P, K), and 
micronutrients (Fe, Zn, Cu, Mn). The pH of the 
soil was measured using a pH meter. The 
Electrical conductivity was determined using a 
conductivity meter in 1:5 (W/V) soil water 
suspensions at 25°C. Organic Carbon (OC) was 
estimated using the chromic acid titration method 
[26]. The Kjeldahl method was used to estimate 
the available N content using alkaline 
permanganate [27]. Available P in the soil was 
determined by Olsen’s method by extraction with 
sodium bicarbonate using a spectrophotometer 
[28]. Total exchangeable K was determined by 
the ammonium acetate method [29] using a 
flame photometer. Fe, Mn, Zn, and Cu were 
estimated by acid digestion of the soil method 
[30].  
 

The soil samples were also used for the isolation, 
quantification, and identification of AM fungal 
spores. The fine roots of plants having 
mycorrhizal association were collected, rinsed 
with tap water, and used to investigate the 
percentage of root colonization. To prepare roots 
for the assessment of percentage root 
colonization Philips and Hayman’s root staining 
and clearing method was used [31]. The 
percentage root colonization was determined by 
slide count and gridline intersect method [32] 
using the following formula:  

 

Root colonization (%) = (Number of AM 
positive segments / Total number of 
segments observed) × 100 

 
The AM fungal spore density was analyzed from 
100 g of rhizosphere soil by using wet sieving 

and decanting method [33]. About 100 g of soil 
was taken from each replicate, mixed thoroughly 
in 1,000 ml of water, and after some time the 
supernatant was poured through the stacked 
sieves. Different sized sieves were used in a 
stack of 250, 210, 150, and 75 μm from top to 
bottom. The spores were recovered on Whatman 
filter paper No. 1 and quantification was carried 
out using Leica EZ4 stereo-microscope. The total 
spore count was carried out using Leica EZ4 
stereomicroscope. 
 
Statistical Analysis was done for Pearson’s 
correlation coefficients of the different physico-
chemical parameters of soil versus AM fungal 
spore density and root colonization associated 
with host plants was calculated. Significance of 
the correlation coefficient value is validated with 
student’s t test.  
 

3. OBSERVATION AND RESULTS 
 

3.1 Physico-chemical Properties of Soil 
 
Characterization of the soil samples collected 
from 4 different sites show variation in almost all 
parameters. The alkalinity of the soil shows an 
increasing trend in wastelands of DCM 
industries, thermal power plant sites, and mining 
waste dump sites whereas control site have 
slightly alkaline soil pH (7.19 ±0.21). DCM 
industrial area has maximum electrical 
conductivity whereas it is least in the control site. 
Average moisture content is found to be highest 
in control are whereas it is least in waste dump 
sites in the mining area. Likewise, the mean soil 
temperature is highest in mining waste dump 
sites and lowest in control areas. Lack of 
vegetation cover may be the reason for low 
moisture content and high soil temperature in 
mining waste dump sites as well as in thermal 
waste dump sites (Table 1). 
 
The organic carbon content of the DCM industrial 
wasteland shows increased values, whereas the 
mining waste dump site shows decreased 
organic carbon. The thermal power plant waste 
dump site has organic carbon values almost 
similar to the undisturbed (control) site. Lack of 
vegetation may be the reason for low organic 
carbon content in mining waste dump sites. 
Available Nitrogen was highest in DCM waste 
dump sites and lowest in mining waste lands. 
Potassium increase in all the three experimental 
sites as compared to the control site whereas 
Phosphorus decreases from the control area to 
DCM industries to thermal to mining waste
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Table 1. Physical and chemical properties of control and three experimental sites (industrial 
waste dump sites) 

 

S. 
N. 

Parameter  

Control DCM Thermal Mining 

1 pH 7.19 ±0.21 7.51 ±0.33 7.66 ±0.16 7.86 ±0.24 
2 EC (ds/m) 0.22 ±0.02 0.28 ±0.24 0.26 ±0.20 0.24 ±0.21 
3 Average Soil temp. (°C) 29.9 ±0.76 31.43 ±0.32 32.87 ±0.24 34.1 ±0.41 
4 Moisture Content (%) 14.60 ±0.91 10.92 ±0.46 9.92 ±0.85 8.02 ±0.46 
5 N (Kg/hect.) 363.2 ±4.05  395.7 ±3.96 318.16 ±4.21 291.43 ±3.62 
6 P (Kg/hect.) 32.43 ±1.07 27.13 ±0.29 23.16 ±1.01 20.03 ±0.86 
7 K (Kg/hect.) 168.66 ±2.33 183.75 ±3.42 206.6 ±5.03 223.7 ±4.25 
8 OC (%) 0.48 ±0.02 0.44±0.24 0.44±0.31 0.35±0.26 
9 Fe (ppm) 2.59 ±0.56 3.8±0.28 5.2±0.41 6.3±0.59 
10 Mn (ppm) 2.3 ±0.39 2.45±0.08 2.66±0.51 2.82±0.09 
11 Cu (ppm) 0.97 ±0.62 1.31 ±0.53 0.85 ±0.08 0.76±0.24 
12 Zn (ppm) 0 .72 ±0.05 0.85 ±0.09 0.69 ±0.11 1.68 ±0.14 
13 Mean Root colonization (%) 53.51 ±1.33 23.10 ±1.02 12.15±1.08 12.45±2.46 
14 Mean spore density 

(spores/10 gm of soil) 
26.5 ±1.15 19.17±0.09 9.75±0.31 7.83 ±0.33 

  
dump sites. This proves that among macro-
nutrients, Potassium increase with increasing 
disturbances whereas available nitrogen and 
Phosphorus decreases. Amongst micro-
nutrients, Iron and Manganese increase in all 
three experimental sites whereas Cu shows the 
highest value in DCM industrial waste dump site 
and Zinc shows the highest value in mining 
waste dump sites (Table 1).  
 

3.2 Correlation between Soil Physico-
chemical Properties and Spore 
Density and Root Colonization  

 
When parameters related to mycorrhiza are 
analyzed, mean root colonization (%) and spore 

density (Spore/ 10 gm of soil) show a decrease 
from the control site in all three experimental 
sites. Thermal power plan waste dump site show 
least root colonization whereas least spore 
density was recorded in mining waste dump 
sites. 
 
A correlation study was carried out to study the 
effect of physico-chemical characteristics of the 
soil on spore density and mean root colonization. 
Pearson’s Correlation coefficient was estimated 
between rootzone soil parameters, such as pH, 
EC, soil moisture, soil temperature, OC, available 
N, P, K, Cu, Zn, Mn, and Fe, and % root 
colonization and spore density of mycorrhiza 
(Table 2).  

 
Table 2. Pearson’s correlation coefficient between physico-chemical properties of soil with 

percentage root colonization and spore density of mycorrhiza 
 

Variable Spore Density Root colonization 

Root colonization 0.540
S
  

pH 0.738
 S

 0.575
 S

 
EC -0.087

NS
 -0.093

 NS
 

Soil moisture -0.506
 NS

 0.589
 S

 
Soil temperature -0.063

 NS
 -0.043

 NS
 

OC 0.071
 NS

 0.216
 NS

 
N 0.114

 NS
 0.112

 NS
 

P -0.227
 NS

 -0.193
 NS

 
K -0.106

 NS
 -0.077

 NS
 

Fe -0.557
 NS

 -0.615
 NS

 
Zn -0.068

 NS
 -0.050

 NS
 

Cu -0.025
 NS

 -0.018
 NS

 
Mn -0.040

 NS
 -0.027

 NS
 

S 
Correlation is significant at (P < 0.05) level, 

NS 
Correlation is non-significant at (P < 0.05) level 
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Fig. 2. Correlation between physico-chemical parameters of soil (pH, EC, Soil temperature, 
Moisture content, OC and Available nitrogen) and percentage mycorrhizal association and 

spore density (spore density is shown by the red line and root colonization by blue line. 
Physico-chemical parameters are taken on X-axis and spore density and % root colonization 

on Y-axis) 
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Fig. 3. Correlation between physico-chemical parameters of soil (Available P, K, Cu, Fe, Mn, 
Zn) and percentage mycorrhizal association and spore density (spore density is shown by the 
red line and root colonization by blue line. Physico-chemical parameters are taken on X-axis 

and spore density and % root colonization on Y-axis). 
 
The results show that mean spore density and 
mean root colonization both have a significant 
positive correlation with soil pH. Spore density 
and root colonization of mycorrhiza are 
negatively correlated to soil Electrical 
conductivity (EC) which is not significant. Soil 
moisture is negatively correlated (non-significant) 
with spore density but positively correlated with 

percentage root colonization (significant). Soil 
temperature is negatively correlated (not 
significant) with both the spore density and root 
colonization. All the macronutrients (P, K) except 
N and micronutrients (Fe, Zn, Cu, and Mn) 
exhibited no significant negative correlation with 
spore density and root colonization. 
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Table 2 and 3 show that the correlation between 
physico-chemical parameters of the soil; pH, EC, 
and soil temperature show correlation with spore 
density and root colonization but they do not 
show a clear-cut trend of their correlation (Fig. 2 
and 3). The same is the trend in the case of 
macro and micro-nutrients in soil.  
 

4. DISCUSSION 
 
The change in soil properties and physiological 
function of plants will directly affect colonization, 
growth, N metabolism, and P uptake of AMF [34]. 
VAM fungi associated with plants occur across a 
broad range of pH, both acid and alkaline, with 
more species occurring in the alkaline range. 
Results of the present study show that all the soil 
samples including the control show slightly 
alkaline pH. Mycorrhizal association and spore 
number were positively influenced by soil pH but 
their response to soil pH may doesn’t show the 
same trend. Though effect of soil pH on root 
colonization was statistically significant but in 
graphical presentation it not found to be 
consistent (Fig. 2). Mycorrhizal colonization and 
community structure can vary with soil pH [35-
37). Acidic soils have been reported to reduce 
the diversity of AM fungi [35,38]. Variations in soil 
pH alter the concentration of many nutrients and 
toxic ions and hydrogen ions in a soil solution 
hence may affect the development and 
functioning of arbuscular mycorrhiza [39]. The 
variation may also be attributed to the host’s 
mediated changes in pH of rhizosphere. The 
response of AM fungi to soil pH may depend on 
the species and strains constituting the 
indigenous AM flora [40]. Soil Electrical 
Conductivity (EC) is a measure of the amount of 
salts in the soil. A higher conductivity value 
indicates that there are more chemicals 
dissolved in the water. Most of the industrial 
effluents carry dissolved and solids salts that 
may increase the EC of the soil. Though EC of 
the soil is insignificantly and negatively correlated 
with both the root colonization and spore density 
it doesn’t show a consistent correlation with root 
colonization (Fig. 2). 
 
Various soil properties that depend on fluctuation 
in environmental factors and climatic variables 
viz. soil temperature and moisture also affect 
mycorrhiza communities. The effects of 
temperature on root colonization are complex 
and the responses of mycorrhiza vary with both 
host plant and fungus [41]. VAM colonization is 
repressed at low temperatures (15°C) [42]. The 
maximum temperature for mycorrhizal 

association ranged between 26.2 and 29.3°C 
[43]. Higher temperature favours root 
colonization because root elongation rate is 
enhanced under increased temperature leading 
to a better AMF root colonization [44]. Whereas 
at a low temperature, reduced nutrient 
acquisition by AMF leads to a decrease in 
mycorrhizal colonization [45]. Growth and 
colonization of mycorrhiza occur at an optimum 
medium temperature. In the present study 30°C 
is found to be the optimum temperature for the 
mycorrhizal association but the correlation 
between soil temperature and root colonization is 
not significant. When the temperature exceeded 
an optimum it had a negative effect on root 
colonization [46]. The responses of AMF to an 
increase or a decrease in temperature seem to 
vary according to the host plant species                
[47].  
 
Soil moisture content and seasonal fluctuations 
also influence AM fungal communities [48,49]. 
Mycorrhizal colonization was directly correlated 
with precipitation [50], on a contrary, Augé et al., 
[51] reported that AMF colonization increased 
under water-limiting conditions. Results of the 
present study go with Allen, [52] and Khanam et 
al., [53] who reported that soil moisture and AM 
fungal colonization were positively correlated but 
contradict Dickman et al., [54] who reported that 
spore population was positively correlated with 
soil moisture. Generally, AM fungi are sensitive 
to soil moisture and optimum moisture for plant 
growth is suitable for AM colonization and 
sporulation [55]. 
 
In the present study, organic carbon showed a 
non-significant positive correlation with both 
mycorrhizal spore density and root colonization, 
thereby corroborating previous reports [53,56]. 
These results are also in line with the findings of 
Liu et al. [57] and Sivakumar [58] who also found 
a high correlation between OC and spore 
production. Organic matter also affects the 
mycorrhizal community in soil [59,60]. There are 
a few contradictory reports that OC and spore 
density were negatively related [61]. Colonization 
rates affect the capacity of AMF to confer its 
associated host plant with soil nutrients in return 
for Carbon that is required for the growth of 
mycorrhiza, which directly affects spore 
germination and the growth of fungal hyphae 
[62]. Organic matter enhances the water holding 
capacity of soil which may increase the 
sporulation of AM fungi thus showing a positive 
correlation with organic carbon content in the soil 
[63,64]. AMF is thought to positively influence 
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soil Carbon pool [65], and in the long-term may 
increase carbon storage [66].  
 
The amount of available N positively influences 
the AM fungi spore population and colonization 
[67,68] and positively correlated with root 
colonization and spore number [53]. The results 
of the present study also corroborate with these 
findings. Aziz and Hebte [69] reported the 
stimulation of root colonization by soil N. There 
are reports that N can either stimulate or 
suppress root colonization and spore production 
through modifications of soil pH [70]. Nitrogen 
plays an important role in influencing the 
formation of mycorrhizal association and 
functions mainly through changes in soil pH. 
However, the effect of Nitrogen and spore 
abundance is related to other soil factors and to 
the host with which they are associated.  
 
AM fungi are often important in root colonization, 
especially in soil with limited phosphorus [24]. 
Soil P was negatively correlated with the 
abundance of root colonization [53,71-73] but 
there are reports that a high soil P supply does 
not always have a negative impact on AM fungi 
colonization [74] and spore density also [75]. On 
the contrary Khanam et al., [53]; Bhardwaj et al., 
[76] reported that soil P was positively correlated 
with spore density. Variation in response to root 
colonization and spore number to the soil P could 
be attributed to several factors. It is also reported 
that higher soil P can reduce AM formation and 
the inhibition may be due to a direct effect on the 
external hyphal growth or be indirectly 
associated with host P status [77]. Other factors 
which attribute to the variation in response of root 
colonization and spore density are sensitivity of 
mycorrhiza species and strain to phosphorus 
[78]. The varied host root growth response to 
changes in P levels [79], or change in the cell 
membrane permeability to varying cellular P 
concentrations is responsible for the degree of 
AM colonization and sporulation [80]. 
 
Soil Potassium was found to be insignificantly 
negatively correlated with root colonization as 
well as with spore density. The findings were in 
harmony with those of Khade and Rodrigues [75] 
but contradicted Gaur and Kaushik [81], and 
Abubacker et al. [82] who observed a positive 
relationship between Available Potassium and 
spore density, and Khanam et al. [53] who 
reported a positive correlation with root 
colonization. A negative correlation between 
Available Potassium and root colonization was 
also reported by Ardestani et al. [83]. An inverse 

relationship between AMF root colonization and 
Available Potassium could be due to the fact that 
AMF tends to lose its potential to develop its 
structural components such as arbuscules as the 
levels of Potassium concentration in soil increase 
[84]. Soil micronutrients (Fe, Cu, Zn, and Mn) are 
insignificantly negatively correlated with root 
colonization and spore density. 
 
Environmental factors that influence mycorrhizal 
root colonization are chemical soil characteristics 
and climatic factors, whereas physical soil 
properties had no significant influence on AMF 
root colonization [43]. Studies indicate that soil 
pH had a greater influence on AM fungal 
communities than host plant species [85]. Lin et 
al., [86] reported that except, for soil moisture, 
there was no significant correlation with the other 
soil physico-chemical factors with root 
colonization and spore density. But relative 
content of N and P in the soil affects AMF 
colonization and spore density. Some studies 
indicate that the host plant favours mycorrhizal 
association. On industrial wastelands plants of 
family Fabaceae have higher root colonization 
[87].  
 

5. CONCLUSION 
 
In the present research, it can be concluded that 
most of the edaphic factors had a varied 
influence on AM fungal colonization and spore 
number. The mycorrhizal root colonization and 
spore density respond differentially to physical, 
chemical, and climatic factors of the soil. Various 
soil factors have a combined influence on the 
mycorrhiza whose response may be specific to 
mycorrhiza species. The research also shows 
that in response to physico-chemical properties, 
root colonization shows no perfect correlation 
whereas spore density follows a more or less 
perfect correlation (Fig. 2 and 3). There are 
possibilities that the availability of host plants has 
a greater role to play in mycorrhizal colonization 
and spore density than soil physico-chemical 
properties of soil. 
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