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Abstract

When data are found to be realizations of a specific distribution, constructing the probability
density function based on this distribution may not lead to the best prediction result. In this
study, numerical simulations are conducted using data that follow a normal distribution, and we
examine whether probability density functions that have shapes different from that of the normal
distribution can yield larger log-likelihoods than the normal distribution in the light of future data.
The results indicate that fitting realizations of the normal distribution to a different probability
density function produces better results from the perspective of predictive ability. Similarly, a
set of simulations using the exponential distribution shows that better predictions are obtained
when the corresponding realizations are fitted to a probability density function that is slightly
different from the exponential distribution. These observations demonstrate that when the form of
the probability density function that generates the data is known, the use of another form of the
probability density function may achieve more desirable results from the standpoint of prediction.

Keywords: Exponential distribution; future data; log-likelihood; normal distribution; predictive estimator;
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1 Introduction

The derivation of a probability density function on the basis of data is one of the major subjects
of interest in statistical science, and has been discussed in many papers and books (e.g., [1,2]).
In conventional theories, if we know that the data are realizations of, for example, the normal
distribution, the data are fitted to the normal distribution. Our problem is then to find estimators
that give parameters of the normal distribution.

When we use the normal distribution, the focus is on which estimators we should adopt when
calculating the value of the variance. The unbiased variance (σ̂2

ub) is a typical estimator for
determining the variance of the normal distribution. The unbiased variance is defined as

σ̂2
ub =

RSS

n− 1
, (1.1)

where n is the number of data and RSS is defined as

RSS =

n∑
i=1

(xi − x̄)2, (1.2)

in which {xi} (1 ≤ i ≤ n) are the data and x̄ is the average of the data.

The maximum likelihood variance (σ̂2
like) is a well-known quantity, and is defined as

σ̂2
like =

RSS

n
. (1.3)

The “third variance” (σ̂2
third) is another estimator for variance, and is defined as follows ([3], section

5.5 of [4], [5,6]):

σ̂2
third =

RSS

n− α
, (1.4)

where α is defined as

α =
4n

n+ 1
≈ 4. (1.5)

In the simulations described below,
4n

n+ 1
is employed as α.

The maximum likelihood variance and unbiased variance are widely used as estimators of variance
for the normal distribution. However, the third variance is a better choice than both the maximum
likelihood variance and unbiased variance when the aim is to maximize the log-likelihood in the light
of future data (i.e., to construct a beneficial probability density function in terms of prediction).
That is, when the values of the log-likelihood in the light of future data are compared, the third
variance provides a larger value than either the maximum likelihood variance or the unbiased
variance. The concepts of prediction and future data are based on that of expected log-likelihood;
refer to [7] for more details.

However, it has not yet been proved whether the third variance is the best and unique estimator
from the perspective of the log-likelihood in the light of future data. Hence, we cannot deny the
possibility that another estimator gives a better probability density function than the third variance.
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To estimate the probability density function for a given set of data, if the parametric form of the
probability density function is known, the parameters of the function should be estimated using the
data. For example, if we know that the data are realizations of the normal distribution, common
sense tells us that the data should be fitted to the normal distribution. However, even if the form of
the probability density function that generates the data is known, the probability density function
that gives the best fit to future data may not necessarily be represented by the parametric form of
the probability density function that generates the data. For example, when the data are known to
be realizations of a seventh-order polynomial equation plus independent and identically distributed
errors of the normal distribution, fitting a quadratic equation using least-squares can lead to better
results than a seventh-order polynomial equation from the perspective of prediction (see page 16 in
[8]). A similar situation may occur in the estimation of the probability density function.

This paper describes numerical simulations conducted to investigate the possibility of obtaining
better probability density functions by fitting probability density functions that have forms other
than that of the probability density function that generates the given data. These numerical
simulations open up a new horizon for techniques where the aim is to derive more beneficial
probability density functions than those given by conventional methods.

2 Procedures and Results of Numerical Simulations

We consider the possibility of obtaining better probability density functions in terms of the log-
likelihood in the light of future data. The numerical simulations involve fitting normally distributed
data to a probability density function other than that of the normal distribution.

First, numerical simulations were conducted to confirm that the third variance maximizes the
log-likelihood in the light of future data when normally distributed data are fitted to the normal
distribution. It should be noted that the log-likelihood in the light of future data is averaged here
to know the expected predictive ability of estimators.

This procedure involved the following steps:

(1) Data generation: the data were taken to be 50 realizations of the normal distribution with a
mean of 0 and variance of 42.

(2) Using the mean and the variance given by the data generated in step (1), the probability density
function of the normal distribution was constructed. The mean of the normal distribution is the
average of the data and the variance of the normal distribution is given by multiplying the third
variance by β. Thus, the following probability density function is derived:

p1(x) =

(
1√

2πβσ̂2
third

)
exp

(
− 1

2βσ̂2
third

(x− x̄)2
)
. (2.1)

(3) To examine the validity of the probability density function constructed in step (2), the log-
likelihood in the light of future data was calculated. The future data in this case were 100 realizations
of the same normal distribution described above. The log-likelihood (l∗) in the light of future data
is defined as

l∗ =

100∑
i=1

log(p1(x
∗
i )), (2.2)

where {x∗
i } (1 ≤ i ≤ 100) represent the future data; {x∗

i } are other realizations given by the normal
distribution with a mean of 0 and variance of 42.
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(4) Steps (1)–(3) were conducted 20, 000 times with different initial values of pseudo-random
numbers to calculate the average log-likelihood in the light of future data.

(5) Using one of {0.90, 0.91, 0.92, . . . , 1.1} as β, steps (1)–(4) were repeated to determine the
relationship between β and the log-likelihood in the light of future data.

(6) Steps (1)–(5) were performed 10 times.

Fig. 1(left) indicates that, from the perspective of the log-likelihood in the light of future data, the
third variance leads to better results than a variance that is somewhat larger or smaller than the
third variance. Fig. 1(right) shows the results of simulations using the unbiased variance instead of
the third variance. That is, σ̂2

third (Eq. (1.4)) in Eq. (2.1) was replaced with σ̂2
ub (Eq. (1.1)). This

graph indicates that a variance with a slightly higher value than the unbiased variance is favorable
from a viewpoint of the log-likelihood in the light of future data.

0.90 0.95 1.00 1.05 1.10

−
2.

82
85

−
2.

82
70

−
2.

82
55

β

Lo
g−

lik
el

ih
oo

d

0.90 0.95 1.00 1.05 1.10

−
2.

83
2

−
2.

82
8

β

Lo
g−

lik
el

ih
oo

d

Fig. 1. Relationship between β and log-likelihood in the light of future data. “×”
denotes the maximum point

Next, the log-likelihoods in the light of future data were calculated using the following probability
density function:

p2(x) = (1− θ)

(
1√

2πσ̂2
third

)
exp

(
− 1

2σ̂2
third

(x− x̄)2
)

+ θtri(x; x̄, σ̂2
third, w). (2.3)

where x̄ and σ̂2
third are the average and third variance of the data ({xi}), respectively. tri(x; x̄, σ̂2

third, w)
is the probability density function of the triangular distribution. The shape of the density function
for the triangular distribution is illustrated in Fig. 2. θ gives the weights of the two probability
density functions; 0 ≤ θ ≤ 1 is assumed.

The data are realizations of N(0, 16) (the normal distribution with mean 0 and variance 16). The
number of data is fixed at 10. The values of l∗ (Eq. (2.2)) in which p1(x

∗
i ) is replaced by p2(x

∗
i )

were calculated using 100 future data, which are other realizations of N(0, 16). This calculation
was conducted 20, 000 times with different initial values of pseudo-random numbers to derive the
average of the 20, 000 log-likelihoods in the light of future data. The value of w was set to one of
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{0.2, 0.4, 0.6, . . . , 2.2} and the value of θ was set to one of {0.0, 0.02, 0.04, . . . , 0.4}. The procedure
described above enables us to calculate the average log-likelihood in the light of future data.
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Fig. 2. Probability density function of the triangular distribution. “var” denotes the
third variance of the data

The results of these calculations are shown in Fig. 3(left), and indicate that θ = 0.14, w = 1.2
yields the maximum value of the mean log-likelihood in the light of future data. The value of
p2(x) (Eq. (2.3)) based on θ = 0.14, w = 1.2 is illustrated in Fig. 3(right); a set of example data
is superimposed. The discrepancy between p2(x) and the normal distribution is substantial. This
indicates that a probability distribution function with a shape somewhat different from the normal
distribution leads to better prediction performance.

Next, we set the number of data to 5. This setting leads to Fig. 4(left), which indicates that
θ = 0.28, w = 1 yields the maximum value of the mean log-likelihood in the light of future data.
The value of p2(x) (Eq. (2.3)) based on θ = 0.28, w = 1 is illustrated in Fig. 4(right); a set of
example data is superimposed. A comparison with the results when the number of data is 10 (Fig.
3(right)) shows that using fewer data increases the discrepancy between the shape of the optimized
probability density function and that of the normal distribution.

Next, we replaced p2(x) (Eq. (2.3)) with

p3(x) = (1− θ)

(
1√

2πσ̂2
third

)
exp

(
− 1

2σ̂2
third

(x− x̄)2
)

+ θuni(x; x̄, σ̂2
third, w). (2.4)

Here, uni(x; x̄, σ̂2
third, w) is the probability density function of the uniform distribution. The shape

of the density function of the uniform distribution is illustrated in Fig. 5. θ gives the weights of
the two probability density functions; 0 ≤ θ ≤ 1 is assumed.

Numerical simulations were conducted using the same data as with p2(x) (Eq. (2.3)). The value of
w was set to one of {0.1, 0.2, 0.3, . . . , 1.1} and the value of θ was set to one of {0.0, 0.01, 0.015, . . . ,
0.095}. With these settings, the log-likelihoods in the light of future data were calculated.

The results of these numerical simulations are presented in Fig. 6(left). This graph indicates that
θ = 0.07, w = 0.7 yields the maximum value of the mean log-likelihood in the light of future data.
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Fig. 3. Mean values of the log-likelihood in the light of future data as a function of θ
and w(left). The dashed line represents the probability density function of the normal

distribution given by the third variance. The solid line represents the probability
density function of the optimized weighted average of the normal distribution and

the triangular distribution. “⃝” denotes a set of example data (right)
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Fig. 4. Mean value of the log-likelihood in the light of future data as a function of θ
and w(left). The dashed line represents the probability density function of the normal

distribution given by the third variance. The solid line represents the probability
density function of the optimized weighted average of the normal distribution and

the triangular distribution. “⃝” denotes a set of example data (right)

The value of p3(x) (Eq. (2.4)) based on θ = 0.07, w = 0.7 is illustrated in Fig. 6(right); a set of
example data is superimposed. The discrepancy between p3(x) and the normal distribution is not
negligible. This result shows that a probability distribution function with a somewhat different
shape to that of the normal distribution provides a better prediction result.
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Fig. 5. Probability density function of the uniform distribution. “var” denotes the
third variance of the data
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Fig. 6. Mean value of the log-likelihood in the light of future data as a function of θ
and w(left). The dashed line represents the probability density function of the
normal distribution given by the third variance. The solid line represents the
probability density function of the optimized weighted average of the normal

distribution and uniform distribution. “⃝” denotes a set of example data (right)

Next, we set the number of data to 5. The value of w was set to one of {0.1, 0.2, 0.3, . . . , 1.1} and the
value of θ was set to one of {0.0, 0.02, 0.04, . . . , 0.38}. The log-likelihoods in the light of future data
were calculated with these settings, and the results are shown in Fig. 7(left). This graph indicates
that θ = 0.18, w = 0.6 yields the maximum value of the mean log-likelihood in the light of future
data. The value of p3(x) (Eq. (2.4)) given by θ = 0.18, w = 0.6 is illustrated in Fig. 7(right); a set
of example data is superimposed. The optimized probability density function differs considerably
from that of the normal distribution.
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Fig. 7. Mean value of the log-likelihood in the light of future data as a function of θ

and w(left). The dashed line represents the probability density function of the
normal distribution given by the third variance. The solid line represents the
probability density function of the optimized weighted average of the normal

distribution and uniform distribution. “⃝” denotes a set of example data (right)

3 Simulations Using Exponential Distribution

The probability density function (f(x)) of the exponential distribution is

f(x) =

{
λ̃exp(−λ̃x) if x ≥ 0

0 if x < 0.
(3.1)

Let us assume that the realizations of the random variable obeying this distribution are {xi} (1 ≤
i ≤ n). Then, the log-likelihood (l(λ|{xi})) of λ is

l(λ|{xi})
n

= log(λ)− λ

n

n∑
i=1

xi. (3.2)

To derive the value of λ that maximizes the log-likelihood, we differentiate this equation with respect
to λ and set the result equal to 0. Then, we have

1

λ
− 1

n

n∑
i=1

xi = 0. (3.3)

This leads to the maximum likelihood estimator:

λ̂ =
n∑n

i=1 xi
. (3.4)

This λ̂ is the maximum likelihood estimator in the light of the data at hand ({xi}). Next, we
assume that {x∗

i } (1 ≤ i ≤ m) are the future data. The log-likelihood (l(λ̂|{xi})) of λ̂ in the light
of this future data is

l(λ̂|{x∗
i })

m
= log(λ̂)− λ̂

m

m∑
i=1

x∗
i . (3.5)
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By maximizing the expectation of this value with respect to {x∗
i }, the predictive estimator of the

exponential distribution is obtained as follows [9]:

λ+ =
(
1− 1

n

)
λ̂ =

(
1− 1

n

) n∑n
i=1 xi

. (3.6)

Numerical simulations were carried out to confirm that λ+ as defined above maximizes the log-
likelihood in the light of future data when exponentially distributed data are fitted to the exponential
distribution. This procedure involved the following steps:

(1) Data generation: the data in this case were 50 realizations of the exponential distribution with
λ = 5.

(2) Using λ̂ (Eq. (3.4)) given by the data generated in step (1), the probability density function
of the exponential distribution was constructed. The value of λ was calculated by multiplying λ+

(Eq. (3.6)) by β. That is, the following probability density function was derived:

p4(x) = βλ+exp(−βλ+x). (3.7)

(3) To examine the validity of the probability density function constructed in step (2), the log-
likelihood in the light of future data was calculated. The future data in this case were 100 realizations
of the same exponential distribution defined above. The log-likelihood (l∗) in the light of future
data is defined as

l∗ =
100∑
i=1

log(p4(x
∗
i )), (3.8)

where {x∗
i }(1 ≤ i ≤ 100) represent the future data.

(4) Steps (1)–(3) were conducted 20, 000 times with different initial values of pseudo-random
numbers and the average log-likelihood in the light of future data was calculated.

(5) Using one of {0.90, 0.91, 0.92, . . . , 1.1} as β, steps (1)–(4) were repeated to determine the
relationship between β and the log-likelihood in the light of future data.

(6) Steps (1)–(5) were carried out 10 times.

Fig. 8(left) indicates that, from the perspective of the log-likelihood in the light of future data, λ+

(predictive estimator) leads to better results than estimators that take somewhat larger or smaller
values than λ+. Fig. 8(right) shows the results of simulations using λ̂ instead of λ+. That is, λ+

in Eq. (3.7) was replaced with λ̂. This graph indicates that a slightly smaller estimator than λ̂ is
favorable in terms of the mean log-likelihood in the light of future data.

Next, the log-likelihood in the light of future data was calculated and the relationship with θ was
investigated using the following probability density function:

p5(x) = (1− θ)

(
λ+exp(−λ+x)

)
+ θ

(
βλ+exp(−βλ+x)

)
. (3.9)

First, we set β = 1.5 and used one of {0, 0.002, 0.004, . . . , 0.038} as θ. Therefore, if the exponential
distribution based on λ+ was the best probability density function in the light of future data, the
setting θ = 0 would maximize the log-likelihood in the light of future data. If θ > 0 maximizes the
log-likelihood in the light of future data, then we have a counter-example against the conventional
belief that realizations of the exponential distribution should be fitted to the exponential distribution.
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Fig. 8. Relationship between β and log-likelihood in the light of future data. “×”
denotes the maximum point

The numerical simulations were performed as follows:

(1) Data generation: the data in this case were 50 realizations of the exponential distribution with
λ = 5.

(2) Using λ̂ (Eq. (3.4)) given by the data in step (1), a probability density function in the form of
Eq. (3.9) was produced.

(3) To examine the validity of the probability density function constructed in step (2), the log-
likelihood in the light of future data was calculated. The future data in this case were 100 realizations
of the same exponential distribution as defined above.

(4) Steps (1)–(3) were conducted 20, 000 times with different initial values of pseudo-random
numbers to obtain the average log-likelihood in the light of future data.

(5) Using one of {0, 0.002, 0.004, . . . , 0.038} as θ in Eq. (3.9), steps (1)–(4) were repeated to
investigate the relationship between θ and the log-likelihood in the light of future data.

(6) Steps (1)–(5) were repeated 10 times.

The results of these procedures are shown in Fig. 9(left). The log-likelihood in the light of future
data is not maximized when θ = 0. Rather, a positive value of θ maximizes the log-likelihood.
Furthermore, numerical simulations comparing the results given by θ = 0 with those given by
θ = 0.015 were conducted 100 times. Fig. 9(right) shows the values obtained by subtracting the
log-likelihood in the light of future data with θ = 0 from that with θ = 0.015. These values are
the averages of 20, 000 log-likelihood values, and 100 future data were used to calculate each log-
likelihood. Because all values in this graph are positive, we conclude that θ = 0.008 yields larger
values of the log-likelihood in the light of future data in all 100 numerical simulations.

Next, steps (1)–(4) were performed with β = 2 and one of {0, 0.002, 0.04, . . . , 0.038} as θ in Eq. (3.9).
The results are presented in Fig. 10(left). Numerical simulations comparing the setting of θ = 0
with that of θ = 0.015 were conducted 100 times. Fig. 10(right) illustrates the values obtained by
subtracting the log-likelihood in the light of future data with θ = 0 from that with θ = 0.015.
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Furthermore, steps (1)–(4) were performed with β = 0.5 and one of {0, 0.001, 0.002, . . . , 0.019} as
θ in Eq. (3.9). The results are illustrated in Fig. 11(left). Numerical simulations comparing the
results given by θ = 0 with those given by θ = 0.008 were repeated 100 times. Fig. 11(right) shows
the log-likelihood in the light of future data given by θ = 0.008 subtracted from that given by θ = 0.

4 Conclusions

The numerical simulations performed in this study show that, from the perspective of the log-
likelihood in the light of future data, it can be preferable to fit data generated by a specific
probability density function to a probability density function other than the original probability
density function. Common sense tells us that the original probability density function should be
used for fitting if the data are considered to be realizations of that specific probability density
function. In this instance, the estimators for calculating the parameters of the probability density
function have been widely discussed. However, when we derive a probability density function obeyed
by realizations, the derivation of estimators for calculating parameters should not be restricted by
the assumption that the same probability density function must be used to fit the data. This paper
has demonstrated this for cases where we wish to obtain the optimal probability density function
from the standpoint of prediction. Instead, we should take account of the possibility that a slightly
different probability density function from the original one that generated the data may lead to
larger values of the log-likelihood in the light of future data.

It should be emphasized that probability distribution functions used in numerical simulations here
are limited. Distributions with heavy tails and nonparametric methods should be adopted in more
sophisticated studies. In addition, we should pay attention to the researches on comparison of
probability density functions for fitting data (e.g., [10-14]). They are informative with respect to
choice of useful probability density functions. However, such studies do not diminish the overall
value of the numerical simulations here because these simulations show that if the sole purpose is
maximization of log-likelihood in the light of future data, we should consider various probability
density functions including the weighted average of conventional probability density functions. If we
aim to pursue another goal such as scientific description of phenomena, we should take a balanced
approach between scientific description and log-likelihood in the light of future data.

In future work, an analytical investigation of the probability density function that should be fitted
to the data is required. For example, we should obtain the analytical form of the best probability
density function, in the sense of prediction, for fitting data generated from the normal distribution or
exponential distribution. The framework of Bayesian approach should be taken into account (e.g.,
[15-17]). Such research will change our understanding of the construction of probability density
functions on the basis of data.
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