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ABSTRACT 
 

Multi-Dimensional Scaling (MDS) is a data visualization method that identifies clusters of points by 
representing the distances or dissimilarities between sets of objects in a lower-dimensional space. 
This paper explores the theoretical concepts of MDS, various methods of implementation, and the 
analytical processes involved. Emphasis is placed on the "Stress" function, a goodness-of-fit metric 
that quantifies the discrepancy between distances in high-dimensional and lower-dimensional 
spaces. Practical examples and detailed procedures for implementing MDS using MS-Excel and R 
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are provided to enhance understanding. The paper also discusses the use of Scree-plots for 
determining the optimal number of dimensions. Applications of MDS in different fields, including 
marketing, ecology, molecular biology, and social networks, are presented with examples on 
Perceptions of Nations data and Morse code confusion data. Additionally, as a significant 
contribution, a case study on factors affecting agricultural productivity is included. The versatility 
and utility of MDS in simplifying complex data and facilitating better decision-making are 
demonstrated through these practical applications and software implementations. 
 

 
Keywords: Stress function; proximity; dissimilarities; scree-plot. 
 

1. INTRODUCTION 
 
Multidimensional Scaling (MDS) is a technique 
used to visualize the distances or dissimilarities 
between sets of objects, such as colors, faces, or 
map coordinates [1]. In an MDS plot, objects that 
are similar (with shorter distances) are placed 
closer together, while dissimilar objects (with 
longer distances) are placed further apart. The 
term "scaling" is derived from psychometrics, 
where abstract concepts are assigned numerical 
values based on a specific rule. For instance, an 
individual's attitude toward global warming might 
be quantified on a scale from 1 (does not believe 
in global warming) to 10 (firmly believes in global 
warming), with intermediate values for varying 
attitudes. MDS encompasses a range of 
statistical methods that spatially represent the 
structure of data, making it easier to visualize 
and interpret. This method is particularly useful 
for visualizing complex relationships and is often 
associated with mapping techniques. Consider a 
scenario where you have a map of a 
geographical region with several cities and 
towns. A table showing the distances between 
these locations can be created, indicating how 
close each pair of cities is. The proximity can be 
defined in various ways, such as straight-line 
distance or shortest travel distance, or it can 
represent a measure of association, like the 
absolute value of a correlation coefficient. 
 
Reversing this process, imagine being given a 
table of distances and tasked with recreating the 
original map. This is analogous to the general 
problem that MDS addresses. MDS creates a 
spatial representation based on proximity data, 
even when the number of dimensions required is 
not known beforehand. Determining the correct 
number of dimensions is crucial and is typically 
done using techniques like Scree plots. However, 
as the number of dimensions increases, the 
complexity of visualization and interpretation also 
increases. Even three-dimensional 
representations can be difficult to display on 
paper and understand, and using four or more 

dimensions can make MDS less effective for 
making complex data comprehensible. 
 
Classical scaling, the traditional MDS method, 
assumes that dissimilarities are exact Euclidean 
distances without any transformation. The 
objective function used in classical scaling 
commonly referred to as "Stress." To minimize 
stress, a strategy called Scaling by Majorizing a 
Complicated Function (SMACOF) is employed, 
which uses majorization. While majorization itself 
is not an algorithm, it provides a framework for 
developing optimization algorithms. 
 

2. LITERATURE REVIEW ON MDS 
 
MDS introduced by Torgerson [2] and further 
developed by Kruskal and Wish [1], Classical 
MDS, as described by Torgerson [2], assumes 
that the input data are dissimilarities that can be 
directly transformed into Euclidean distances. 
Non-metric MDS, developed by Kruskal (1964), 
allows for the analysis of ordinal data, ensuring 
that the rank order of the distances in the low-
dimensional space matches that of the original 
dissimilarities. 
 
MDS has been widely applied across various 
fields. In psychology, it is used to map perceptual 
and cognitive processes [3]. Ecology utilizes 
MDS for visualizing species distributions and 
environmental gradients [4]. Additionally, MDS is 
used in bioinformatics to study protein structures 
and genetic data [5]. De Leeuw and Mair [6] offer 
a comprehensive overview of MDS, describing 
different MDS versions and detailing an R 
software package named SMACOF that 
integrates all known MDS procedures. 
 
Several studies have continued to expand the 
applications of MDS. For example, Pacini et al. 
[7] combined MDS with cluster analysis to 
describe the diversity of rural households, while 
Liu et al. [8] used MDS for information 
visualization, highlighting its ability to simplify 
complex datasets for better interpretability. 



 
 
 
 

Manjunatha et al; Arch. Curr. Res. Int., vol. 24, no. 6, pp. 586-599, 2024; Article no.ACRI.120452 
 
 

 
588 

 

In marketing, MDS can be used to derive 
“product maps” of consumer choice and product 
preference, such as for automobiles and beer, 
allowing relationships between products to be 
discerned. In ecology, it provides “environmental 
impact maps” of pollution, like oil spills and 
sewage pollution, on local communities of 
animals, marine species, and insects. This 
method has been used to study the complex 
correlations between global temperature time-
series, offering a graphical representation of 
climatic similarities between regions globally [9]. 
In fisheries, MDS has been applied to study the 
performance of 18 marine fishery resources in 
Maharashtra, India [10]. In molecular biology, it 
helps reconstruct the spatial structures of 
molecules, such as amino acids, and interpret 
their interrelations, similarities, and differences, 
leading to the construction of a 3D “protein map” 
for a global view of the protein structure 
universe. In social networks, MDS aids in 
developing “telephone-call graphs,” where 
vertices represent telephone numbers and edges 
correspond to calls between them, which can 
help recognize instances of credit card fraud and 
detect network intrusions. MDS has been applied 
in meteorological forecasting [11], content-based 
retrieval [12], market structure visualization [13], 
and high-dimensional space exploration [14].  
 
MDS encompasses a range of algorithms 
designed to find an optimal low-dimensional 
configuration based on proximity data. Primarily 
used for data visualization, MDS helps identify 
clusters of points, where points within the same 
cluster are closer to each other compared to 
points in different clusters. Various books provide 
in-depth discussions on MDS techniques, 
including works by Kruskal and Wish [1], Coxon 
[15], Hair et al. [16], Cox and Cox [17], Borg and 
Groenen [18], Izenman [19], de Leeuw and 
Heiser [20], Ding [21]. 
 

3. MATERIALS AND METHODS 
 

3.1 Correlation Coefficient 
 
A correlation coefficient is a statistical measure 
that quantifies the strength and direction of the 
linear relationship between two variables. The 
most commonly used correlation coefficient is the 
Pearson correlation coefficient, which ranges 
from -1 to 1. A value of 1 indicates a perfect 
positive linear relationship, -1 indicates a perfect 
negative linear relationship, and 0 indicates no 
linear relationship. The covariance of two 
variables divided by the product of their standard 

deviations gives Pearson’s correlation coefficient. 
It is usually represented by 𝜌 (rho).  
 

𝜌(𝑋, 𝑌) =
COV(X,Y)

σ𝑋σ𝑋
=

E(X−μ𝑋)(Y−μ𝑌)

σ𝑋σ𝑌
           (1) 

 
 Correlation coefficients are crucial in 
understanding the degree to which variables 
move together and are used extensively in 
various fields. In the context of MDS, 
incorporating correlation coefficients helps in 
accurately representing the similarities or 
dissimilarities between data points, ensuring that 
the visualization reflects the true relationships 
within the data. 
 

3.2 Correlation Pairwise Metric 
 
A correlation pairwise metric extends the concept 
of correlation coefficients by focusing on the 
relationships between pairs of data points. This 
metric considers the pairwise correlation 
between all possible pairs within a dataset, 
providing a comprehensive view of the 
interdependencies among variables. By 
calculating these pairwise correlations, one can 
construct a similarity or dissimilarity matrix that 
serves as the foundation for techniques like 
MDS. This matrix captures the intricate patterns 
of association between data points, allowing for a 
more nuanced and accurate representation of 
the data in a lower-dimensional space. Utilizing a 
correlation pairwise metric in MDS enhances the 
fidelity of the resulting configuration, leading to 
better insights and more meaningful 
interpretations. 
 

3.3 Proximity Matrices 
 
“The proximity measure gives the “closeness of 
two entities, which can be defined in a number of 
different ways. In many types of experiments, 
proximity data are obtained from a group of 
subjects, each of whom make similarity (or 
dissimilarity) judgements on all possible 

unordered pairs of n entities i.e.  𝑚 =  (𝑛
2

) =

 
1

2
𝑛(𝑛 − 1). It is irrelevant whether the similarities 

or dissimilarities are used as our measure of 
proximity between two entities. In other words, 
“closeness” of one entity to another could be 
measured by a small or large value. The only 
thing that matters when carrying out MDS is that 
there should be a monotonic relationship (either 
increasing or decreasing) between the 
“closeness” of two entities and the corresponding 
similarity or dissimilarity value” [22]. Anyway, 
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usually similarities are converted into 
dissimilarities through a monotonically 
decreasing transformation. Consider a particular 

collection of n entities. Let  δ𝑖𝑗  represent the 

dissimilarity of the ith entity to the jth entity. The 

m dissimilarities, { δ𝑖𝑗} , are arranged into 

(𝑚 × 𝑚) square matrix, 
 

∆ =  ( δ𝑖𝑗)             (2) 

 
called a proximity matrix. In case of dissimilarities 
the proximity matrix is usually displayed as a 
lower-triangular array of non-negative entries, 
with the understanding that the diagonal entries 
are all zeroes and that the upper-triangular array 
is a mirror image of the given lower-triangle (i.e., 
matrix is symmetric). In other words, for all 𝑖, 𝑗 =
1, 2, … , 𝑛, 
 

δ𝑖𝑗 ≥ 0,   δ𝑖𝑖 = 0,  δ𝑗𝑖 =  δ𝑖𝑗.                    (3) 

 

3.4 Stress Function 
 
So far, the task of MDS was defined as finding a 
low-dimensional configuration of points 
representing objects such that the distance 
between any two points matches their 
dissimilarity as closely as possible. Of course, it 
is preferred that each dissimilarity should be 
mapped exactly into its corresponding distance in 
the MDS space. But empirical data always 
contain some component of error given by 

𝑓(δ𝑖𝑗) − 𝑑𝑖𝑗 ,where dij’s  are the computed 

Euclidean distances between the objects in the 
arbitrarily constructed plot. Since positive and 
negative discrepancies are equally undesirable, 
the sum of squared errors for all proximities is 
taken, which yields the formula. 
 

𝑅𝑎𝑤 𝑠𝑡𝑟𝑒𝑠𝑠 = ∑ ∑ (δ𝑖𝑗 − 𝑑𝑖𝑗  )
2

𝑗𝑖  , by taking 𝑓(δ𝑖𝑗) = δ𝑖𝑗       (4) 

 
To counter the effect of scale-dependency, the 
raw stress is normalised to have the general 
form, 
 

{∑ 𝑤𝑖𝑗(δ𝑖𝑗 − 𝑑𝑖𝑗  )
2

𝑖<𝑗 }
1/2

                                     (5) 

 

where the {𝑤𝑖𝑗} are weights chosen by the user. 

The most popular normalization is where 𝑤𝑖𝑗 =

(∑ 𝑑𝑖𝑗  2𝑖<𝑗  )
−1

, so that the raw stress become the 

Stress1 i.e., 
 

 𝑆𝑡𝑟𝑒𝑠𝑠1 = 𝑆 = {
∑ (δ𝑖𝑗−𝑑𝑖𝑗 )

2
𝑖<𝑗

∑ 𝑑𝑖𝑗 2𝑖<𝑗
}

1

2

 ,                                    (6)  

 

where it is understood that the summations in 
both the numerator and denominator of S are 
computed for all 𝑖, 𝑗 =  1,2, … , 𝑛  such that 𝑖 < 𝑗 . 
The stress-1 value (S) lies between 0 and 1. 
“The stress criterion S (more commonly known 
as Kruskal’s stress formula one or Stress-1) can 
be interpreted as a loss function that depends 
upon the configuration points and the disparities 
and measures how well a particular configuration 
fits the given dissimilarities. It is worth noting that 

certain authors refer to the stress function as 𝑆2. 
A variant, stress formula 2, differs only in that 
different weights are used” [22]. 
 

3.5 Data Visualization  
 

Data visualization bridges complex data sets and 
intuitive understanding, revealing patterns and 
trends that raw data may obscure. Techniques 
like bar charts, scatter plots, heat maps, and 
advanced methods such as MDS are crucial in 
this process. Dimensionality reduction simplifies 
data while retaining essential features, 
enhancing visualization [23,24]. Algorithms for 
dimensionality reduction improve interactive 
visualization, making data exploration more 
intuitive [25]. Comprehensive approaches to data 
visualization, including these methods, are well-
documented [26]. Effective visualizations not only 
aid in analysis but also communicate findings to 
a broader audience, making them indispensable 
in research. 
 

3.6 Scree-Plot 
 

A scree-plot is a method for determining the 
optimal number of components useful to describe 
the data in the context of MDS. To create a 
Scree-plot, analysts scale the data several times 
(with higher dimensionality each time), and plot 
the stress values as a function of dimensions 
[27]. Here, the stress values are plotted on y-axis 
and the number of dimensions are plotted on x 
axis as shown in Fig. 1. The aim is to evaluate 
the number of dimensions required to capture 
most information contained in the data. A point 
where the slope of the curve changes sharply 
referred to as the “elbow” of the plot determines 
the optimal number of dimensions to describe the 
data. 
 

Normally, a complex set of relationships can be 
scanned at a glance with the aid of visual 
representation provided by MDS. Since maps on 
paper are two-dimensional objects, this 
translates technically to finding an optimal 
configuration of points in 2-dimensional space. 
However, limiting to a two-dimensions may lead
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Fig. 1. Scree-plot 
 
to a very poor, highly distorted, representation of 
the data. In order to overcome this limitation the 
number of dimensions may be increased (if 
needed) but there are difficulties in representing, 
comprehending and estimating the parameters 
for the higher dimensions. Four or more 
dimensions render MDS virtually useless as a 
method of making complex data more accessible 
to the human mind. 
 

3.7 Smacof 
 
The Stress function that measures the deviance 
of the distances between points in a geometric 
space and their corresponding dissimilarities is to 
be minimised. An easy and powerful 
minimization strategy is the principle of 
minimizing a function by iterative majorization. 
Because for finding the minimum of a function 
𝑓(𝑥) , it is not always enough to compute the 

derivative 𝑓′(𝑥), set it equal to zero, and solve 
for x. Sometimes the derivative is not defined 
everywhere, or solving the equation 𝑓′(𝑥) = 0 is 
simply impossible. For such cases, other 
mathematical techniques are referred. A useful 
method consists of trying to get increasingly 
better estimates of the minimum. It consists of a 
set of computational rules that are usually 
applied repeatedly, where the previous estimate 
is used as input for the next cycle of 
computations which outputs a better estimate. In 
the SMACOF algorithm, the central idea of the 
majorization method is to replace iteratively the 
original complicated function f(x) by an auxiliary 
function g(x, z), where z in g(x, z) is some fixed 
value. The function g has to meet the following 
requirements to call g(x, z) a majorizing function 
of f(x). The auxiliary function g(x, z) should be 
simpler to minimize than f(x). For example, if g(x, 

z) is a quadratic function in x, then the minimum 
of g(x, z)over x can be computed in one step. 
The original function must always be smaller 
than or at most equal to the auxiliary function; 
that is, f(x) ≤ g(x, z). The auxiliary function should 
touch the surface at the so-called supporting 
point z; that is, f(z) = g(z, z). 
 
Hence, the iterative majorization algorithm is 
given by 
 

1. Set 𝑧 = 𝑧0, where z0 is a starting value.  
2. Find update 𝑥𝑢  for which g(𝑥𝑢 , 𝑧) ≤ g(z, 

z). 
3. If  𝑓(𝑧) − 𝑓(𝑥𝑢) < ε  , then stop. (ε is a 

small positive constant)  
4. Set  𝑧 = 𝑥𝑢 and go to step 2. 

 
Example 1. Application to Perceptions of 
Nations: 
 
Now the procedure followed to obtain the two-
dimensional MDS plots are discussed with an 
illustration using excel where the dissimilarity 
matrix is given. The data reflecting mean scores 
of 18 respondents’ perceptions of overall 
dissimilarity between twelve nations on a scale 
ranging from 1 for “very familiar” to 9 for “very 
different” was ordered as a diagonal matrix of 66 
pairs [1] as shown in Table 1. Since it has been 
decided on a two dimensional representation of 
the data, a starting configuration for the n objects 
in the two dimensions has to be set up (i.e. Co-
ordinates xn,, yn are arbitrarily selected for each 
object) represented in the Table 2. The next step 
involves calculating the Euclidean distance 
between the objects. However the data points 
arranged within the graph will always be a 
difference between the actual values in our 
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Table 1. Representation of the dissimilarity matrix  
 

 Brazil Congo Cuba Egypt France India Israel Japan China Russia USA Yugoslavia 

Brazil 0.0 4.17 3.72 5.56 4.28 4.5 5.17 5.5 6.61 5.94 3.61 5.83 
Congo 4.17 0.0 4.44 4.0 5.0 4.17 5.67 5.61 5.61 5.61 6.61 6.61 
Cuba 3.72 4.44 0.0 3.83 4.89 5.17 5.39 6.06 5.61 3.56 5.67 5.35 
Egypt 5.56 4.0 3.83 0.0 4.22 5.17 4.33 4.5 5.17 4.61 3.06 4.72 
France 4.28 5.0 4.89 4.22 0.0 5.17 4.33 4.78 5.17 3.94 4.28 5.0 
India 4.5 4.17 5.17 5.17 5.17 0.0 5.0 5.5 5.33 4.5 3.06 5.0 
Israel 5.17 5.67 5.39 4.33 4.33 5.0 0.0 4.45 4.89 4.83 4.72 4.56 
Japan 5.5 5.61 6.06 4.5 4.78 5.5 4.45 0.0 5.17 4.83 3.06 5.0 
China 6.61 5.61 5.61 5.17 5.17 5.33 4.89 5.17 0.0 4.39 6.44 4.72 
Russia 5.94 5.61 3.56 4.61 3.94 4.5 4.83 4.83 4.39 0.0 3.28 3.94 
USA 3.61 6.61 5.67 3.06 4.28 3.06 4.72 3.06 6.44 3.28 0.0 2.23 
Yugoslavia 5.83 6.61 5.35 4.72 5.0 5.0 4.56 5.0 4.72 3.94 2.23 0.0 

 

 
 

Fig. 2. Two-dimensional MDS plot Perceptions of Nations data 
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original diagonal matrix and the inter-point 
distances reflected and measured in the graph. 
Even after trying thousands of different 
arrangements there will still be errors and        
the best option is to minimize the            
cumulative errors in an arrangement, i.e. 
minimise the stress and show that as the              
best representation made out of the                
data provided. In other words, it would be               
a trial and error or iterative process of              
finding the best cumulative error minimising 
arrangement. Making use of the built in          
facility within Microsoft Excel (i.e. in Solver Add-
in which is part of the Microsoft package)                 
the solutions to such problems are found). Hence 
the optimised values of the co-ordinates (x and y, 
shown on Table 3) are obtained by minimising 
the stress. And finally, these points are plotted in 
a two-dimensional MDS plot as shown in the  
Fig. 2. 
 

Table 2. Initial values of the co-ordinates 
 

 x y 

Brazil 0.0 0.0 

Congo 4.17 0.0 

Cuba 0.0 3.72 

Egypt 5.56 0.0 

France 0.0 4.28 

India 4.5 0.0 

Israel 0.0 5.17 

Japan 5.5 0.0 

China 0.0 6.61 

Russia 5.94 0.0 

USA 0.0 3.61 

Yugoslavia 5.83 0.0 

 
Table 3. Optimised values of the co-

ordinates after using SOLVER 
 

 x y 

Brazil 0.001838 3.362963 

Congo 2.060104 0.288286 

Cuba 3.203355 2.524228 

Egypt 4.439001 1.350378 

France 1.642403 5.163494 

India 5.714004 1.191312 

Israel 3.297548 7.593489 

Japan 5.302053 7.59025 

China 7.910626 2.985486 

Russia 5.990066 4.831061 

USA 1.818794 7.085297 

Yugoslavia 7.00531 5.269065 

Example 2. An Application of MDS to Morse 
Code Confusions Data: 
 
Kruskal and Wish [1] investigated how people 
unfamiliar with Morse code, a system of dots and 
dashes representing letters and numbers, 
perceive and confuse these auditory signals. 
Participants listened to pairs of Morse code 
signals and indicated whether they perceived 
them as the same or different. Morse Code 
Confusions Data presented in the Figure 3, 
reveal patterns of similarity and dissimilarity 
between the signals. This confusion matrix 
displays the percentage of participants who 
judged a pair of signals (represented by the row 
and column) as the same. High percentages 
along the diagonal indicate that identical signals 
were correctly perceived as such. Off-diagonal 
cells, representing different signal pairs, 
generally exhibit lower percentages, reflecting 
accurate discrimination. However, some off-
diagonal cells show higher percentages, 
indicating specific pairs of signals were prone to 
confusion. This study sheds light on the 
perceptual and cognitive processes involved in 
auditory pattern recognition. By analyzing the 
Morse Code Confusions Data, researchers can 
identify which Morse code signals are                
more easily confused with each other,          
providing insights into the underlying 
mechanisms of auditory perception and the 
potential challenges in learning and using Morse 
code. 
 
Applying MDS to the Morse Code Confusions 
Data yields a visual representation of the 
perceived similarities among the signals, as 
shown in Fig. 4. In MDS analysis, proximity 
signifies similarity: signals perceived as similar 
are closer together, while dissimilar signals are 
farther apart. For instance, the signals for "B" 
and "X" exhibit high similarity values (84% and 
64%, respectively) and are positioned close 
together in the configuration. Conversely, the 
signals for "E" and "0"display low               
similarity values (3% and 0%) and are positioned 
far apart. 
 
Comparing this two-dimensional MDS plot to a 
three-dimensional MDS plot (Fig. 5) reveals 
subtle differences. For example, in the two-
dimensional plot, "O" appears closer to "I" than to 
"9", while the reverse is true in the three-
dimensional plot. This highlights the nuances that 
additional dimensions can reveal in complex 
perceptual data. 
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Fig. 3. Representation of Morse code data 
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Fig. 4. Result of applying MDS to the proximities of Morse code data 
 

 
 

Fig. 5. Three-dimensional MDS plot for Morse code data 
 

4. CASE STUDY: ILLUSTRATION 
USING A PRACTICAL DATASET 
RELATED TO AGRICULTURE 

 
In a study, information from experts was obtained 
through questionnaires for identification of 
specific technologies / scientific development that 
need major attention for increasing the 
productivity of cereals, pulses and oilseeds in 
India which was then statistically analyzed for 
prioritizing future technological needs [28]. 
Attempts are made to analyze the available 
information using MDS approach. A total of 35 
experts responded for ranking the factors 
responsible for enhancing agricultural 
productivity. The data is represented in Table 4. 

In order to study the experts’ perceptions of 
important factors attributable to agricultural 
growth, the responses (differing in their levels of 
importance as viewed by the experts) were 
considered two at a time (“all-pairs design”). 
Thus the responses (on a five point score from 0 
to 4) of experts for the possible 10C2 = 45 pairs of 
factors were collated. The rating for each pair of 
factors was averaged over all respondents and 
the result divided by 4 to bring the similarity 
ratings into the interval (0,1). These mean 
similarity values were then collected into a (10 x 
10) table, which can then be treated as a 
correlation-like matrix. The similarities were 
converted into dissimilarities which are tabulated 
in Table 5. 
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Table 4. Dataset of factors affecting agricultural productivity 
 

Factors 1 (1.00) 2 (0.75) 3 (0.50) 4 (0.25) 5 (0.00) Score 

F1-Quality seed availability 25 6 2 0 0 30.5 
F2-Better varieties 22 8 3 0 0 29.5 
F3-Timely availability of inputs 11 20 2 0 0 27.0 
F4-Proper research infrastructure 16 11 4 2 0 26.8 
F5-Better agronomic practices 11 15 7 0 0 25.8 
F6-Adaptation to changing climatic 
and environmental scenario 

12 12 7 2 0 25.0 

F7-Marketing facilities 11 11 8 3 0 25.0 
F8-Minimum Support Price (MSP) 11 10 10 2 0 24.0 
F9-Development of location 
specific technologies 

9 13 8 3 0 23.5 

F10-Better extension services 11 8 12 2 0 23.5 

 
Using the below mentioned R codes the MDS of 1,2,3,4,5 dimensions were fitted and the respective 
stress value vs dimension were plotted to obtain a scree-plot as shown in Fig. 6.  
 
ag=read.csv(file.choose()) 
agg=ag[-1] 
head(agg) 
rownames(agg)=colnames(agg) 
aggmds1 = smacofSym(delta = agg,ndim = 1, type = "ratio" ) 
aggmds2 = smacofSym(delta = agg,ndim = 2, type = "ratio" ) 
aggmds3 = smacofSym(delta = agg,ndim = 3, type = "ratio" ) 
aggmds4= smacofSym(delta = agg,ndim = 4, type = "ratio" ) 
aggmds5 = smacofSym(delta = agg,ndim = 5, type = "ratio" ) 
slotNames(summary(aggmds3)) 
#######______screeplot-------- 
stress=c(aggmds1$stress,aggmds2$stress,aggmds3$stress, 
         aggmds4$stress,aggmds5$stress) 
dimensions=c(1:5) 
screeplot= plot(dimensions,stress,type = "b") 
 

 
 

Fig. 6. Scree-plot obtained for the practical dataset 
 
With the aid of the scree-plot it is found that 3 dimensional MDS would be more appropriate. For the 
comparison’s sake, both the 2 dimensional and 3 dimensional MDS plots are obtained. The two-
dimensional plot is obtained using the following R codes 
 
zz=matrix(c(-0.1721, -0.7945, 
               0.6601,-0.1938, 
               0.7472,  0.1648, 
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              -0.0980, -0.2118, 
              -0.4939,  0.7607, 
              -0.8062, -0.0477, 
              -0.5458, -0.1848, 
               0.4331, -0.3045, 
               0.3099,  0.3091, 
              -0.0344,  0.5025),10,byrow = T) 
x <- zz[, 1] 
y <- zz[, 2] 
plot(x, y,xlab = "Dimension_1", 
     ylab = "Dimension_2", 
     main = "Two-dimensional MDS ", xlim = c(-1,1),ylim = c(-0.6,0.8)) 
text(x,y,labels = rownames(agg),col =rainbow(11),pos = 2) 
 

 
 

Fig. 7. Two-dimensional MDS plot for the practical dataset 
 
The two-dimensional plot obtained is shown in Fig. 7. Similarly, the three-dimensional MDS was 
generated using the following R code, and the plots are depicted in Fig. 8. 
 
zzz=matrix(c(-0.3870 ,-0.2334 , 0.6767 
            , 0.5048 ,-0.0301 ,-0.3832 
             ,   0.6853,  0.1862, -0.1379 
             ,  -0.1254, -0.2381,  0.1989 
             ,  -0.3648,  0.7538, -0.2317 
             ,  -0.6523, -0.1045, -0.4210 
             ,  -0.4402, -0.3687, -0.2364 
             ,   0.4051, -0.3406, -0.2151 
             ,   0.3870, -0.0817,  0.4253 
             , -0.0124,   0.4571,  0.3244),10,byrow = T) 
x <-zzz[, 1] 
y <- zzz[, 2] 
z= zzz[,3] 
#library(rgl) 
plot3d(x,y,z,xlab = "Dimension_1", 
       ylab = "Dimension_2", 
       zlab="Dimension_3", 
       col = rainbow(11),size = "10") 
text3d(x,y,z,row.names(agg),pos=1,col=rainbow(11)) 
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Fig. 8. Three-dimensional MDS plot for the practical dataset 

 
Table 5. Dissimilarity Matrix of Factors Affecting Agricultural Productivity 

  
F1  F2  F3  F4  F5  F6  F7  F8  F9  F10  

F1  0.00 0.23 0.27 0.15 0.25 0.24 0.22 0.23 0.21 0.22 
F2  0.23 0.00 0.09 0.18 0.25 0.26 0.22 0.10 0.19 0.22 
F3  0.27 0.09 0.00 0.21 0.26 0.28 0.25 0.13 0.16 0.19 
F4  0.15 0.18 0.21 0.00 0.21 0.20 0.14 0.16 0.15 0.16 
F5  0.25 0.25 0.26 0.21 0.00 0.23 0.24 0.25 0.25 0.21 
F6  0.24 0.26 0.28 0.2 0.23 0.00 0.10 0.22 0.25 0.20 
F7  0.22 0.22 0.25 0.14 0.24 0.10 0.00 0.21 0.19 0.20 
F8  0.23 0.10 0.13 0.16 0.25 0.22 0.21 0.00 0.16 0.21 
F9  0.21 0.19 0.16 0.15 0.25 0.25 0.19 0.16 0.00 0.16 
F10  0.22 0.22 0.19 0.16 0.21 0.20 0.20 0.21 0.16 0.00 

 
The three-dimensional plot provides more 
information as in the two-dimensional plot it can 
be seen that F1 and F7 and close together which 
is also represented in the left three-dimensional 
plot, but the actual distance in three dimension 
between F1 and F7 can be seen in the right three 
dimensional plot. In higher dimensions, there are 
significant challenges in representing, 
comprehending, and estimating parameters. 
When extending beyond three dimensions,            
MDS becomes virtually ineffective as a            
method for making complex data                   
more accessible to the human mind.                   
Four or more dimensions make it exceedingly 
difficult to visualize and interpret the results, 
diminishing the utility of MDS for practical data 
analysis. 
 

5. CONCLUDING REMARKS 
 
MDS serves as a powerful data visualization 
technique that simplifies complex data by 
portraying its structure spatially, making it easier 
to understand relationships among a set of 
stimuli. Through various applications in 
marketing, ecology, molecular biology, social 

networks, and more, MDS has proven to be a 
versatile tool for quantifying similarity or 
dissimilarity between entities. Despite challenges 
in choosing the number of dimensions and the 
inherent difficulties in representing higher-
dimensional data, tools such as the Scree-plot 
assist in selecting the optimal number of 
dimensions. This study provides detailed 
examples and step-by-step procedures for 
implementing MDS using MS-Excel and R, 
enhancing the understanding of the practical 
aspects of MDS. Additionally, MDS applications 
in Perceptions of Nations data and Morse code 
confusion data are presented. Real-world 
datasets, such as factors affecting agricultural 
productivity, are analysed to demonstrate the 
effectiveness of MDS. The practical         
examples and software implementations 
provided in this paper illustrate the                  
utility and broad applicability of MDS. By 
enabling researchers to visualize and          
interpret complex data, MDS continues to            
be an essential method in diverse                
fields, facilitating better decision-making and 
deeper insights into data patterns and 
relationships. 
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