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ABSTRACT 
 

In this article, the factorization of a torsion module structure is examined and definitions and 
theorems related to the uniform factorization part in modules are given. Then, the prime sub-
modules of the modules that can be factorized by a single method are examined and basic 
definitions and theorems are given. We have also studied the module elements in written form as 
the product of the unreducible elements of the ring with the unreducible elements of the modules 
with the help of weak prime units defined on the torsion modules. 
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1. INTRODUCTION 
 

Commutative rings have an important place as 
algebraic structures. Here are the basics about 
commutative rings: 

For a ring to be commutative, the multiplication of 
the items in that ring must be commutative. That 
is 𝑥1⋅𝑥2=𝑥2⋅𝑥1 all 𝑥1, 𝑥2. It should be valid for 𝑥1, 

𝑥2  items. There are two operations in a ring: 
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addition (+) and multiplication (·). These 
processes must provide the following features: 
 
Addition and multiplication are disabled. 
 
Addition and multiplication are combinational. 
 
It is additive, commutative and associative. 
 
For each item there is an additive inverse item. 
 
Multiplication is associative and the distributive 
property is satisfied (over addition). If there is a 
unit item (1) in the ring, it is an item that gives 
itself when multiplied by each item (i.e. 𝑎⋅1=𝑎 
and 1⋅𝑎=𝑎 ). For examples; Integers (𝑍), is a 
commutative ring in which “+” and “.” operations 
are performed. 
 
Polynomial Ring: Polynomials over real 
numbers are a commutative ring in terms of 
addition and multiplication. 
 
Matrix Ring: 𝑛×𝑛 matrices, but only 1×1 
matrices (i.e., scalars) form a commutative ring. 
Ideals: In a commutative ring, certain subsets of 
ideals form substructures compatible with the 
multiplication and addition structures of the ring. 
 
Fields: If each nonzero item in a commutative 
ring has an inverse item for multiplication, this 
ring is called a field. Application Areas 
Commutative rings have important applications in 
many mathematical fields such as number 
theory, algebraic geometry, cryptography. 
 
Rings are generalizing algebraic structures in 
which the field product does not need to be 
commutative and multiplicative reciprocals do not 
need to exist. Informally, a ring is a cluster 
equipped with two binary transactions that satisfy 
features similar to the “+” and “.” of integers. A 
ring member can be numbers such as ℤ or ℂ, as 
well as nonnumerical objects such as 
polynomials, square matrices, functions, and 
power series. In this paper, R will denote a ring 
unless otherwise specified (Alan and                    
Özbulur 2016, Anderson et al. 1997, Anderson 
1996). 
 
In Atani and Farzilipour 2006, the concept of 
unique factorization fields (MFUs) generalised to 
torsion free modules over integral fields, named 
factorization of modules, and some fundamental 
theorems for factorization of modules heve been 
proven. 
 

The aim of this paper is to expand the study of 
factorization of modules to large families of 
modules in order that look for farther similarities 
among the theory of factorization of modules and 
MFUs. First, the known definitions of factorization 
of modules and related literature are given. The 
fundamental theorem of factorization of modules 
is proved, which states 5 cases, each of which is 
equal to a module being factorization of in a 
MFU. We support the notation of principal sub-
modules analogous to principal ideals of rings. A 
module T on a non domain MFU R is proved to 
be factorization of if and only if T has nonzero 
principal sub-modules each includes one item of 
the form pn for some unreducible items z∈T and 
s ∈ R, respectively. The superposition of a MFU 
R is in case a factorization of expansion if it is a 
factorization of module R. In this paper (g.c.d.) 
will denote the greatest common denominator 
and (l.c.m.) the least common multiple, unless 
otherwise stated. 
 

2. UNIFORM FACTORİZATİON İN 
MODULES 

 
Definition 2.1 Suppose a, b ∈ ℤ in which at least 
one of them is not zero. The largest common 
divider of a and b, expressed by gcd(a,b), d ∈ ℤ+, 
which provides the next: 
 
i-) q|x , q|b 
ii-) If c|x , c|b so, c≤q. 
 
Definition 2.2. An element 0≠t ∈ M is called 
unreducible element if t has no appropriate factor 
in M.  
It is obvious that, t ≠ 0 for x ∈ R is unreducible 

⇔t = xt ' and t'∈ M implies x ∈ U. 
 
Definition 2.3 An element 0≠t ∈ M is said to be 

primal, if t | 0 ≠ a ∈ R and xt' for t'∈ M, i.e. t|t'. 
 
Proposition 2.1 Let 0 ≠ t ∈  M .  So, the next 
circumtances are tantamount: 
 
1-) t is primal;  
2-) Rt cyclic sub-module is clear;  
3-) If x ∈ M, so Rx∩Rt =(0) or Rx ⊆ Rt. 
 
Proof. See (Sontag et al., 1978). 
 
Definition 2.4 An item 𝑢 ∈  𝑅 is termed  principal 
to an R module M if 
 
i-) u is unreducible in R and 
ii-) u | x ∈ R and t ∈ M for u | R or x in u | t in M. 
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Definition 2.5. A torsion free M-module over an 
integral domain R is named a unique 
factorization module (MFU) or a factorization of 
module if the next rules are provided: 
 
[UF1] Each 0≠x ∈ M has an unreducible 

factorization, i.e. x = 𝑎1  𝑎2 ... 𝑎𝑛 t, where 𝑎1  𝑎2 ... 

𝑎𝑛 is unreducible in R and m is unreducible in M. 
 
 [UF2] If x = 𝑎1  𝑎2 ... 𝑎𝑛 t = 𝑏1  𝑏2 ... 𝑏𝑛 t' is an 
unreducible factorization of x into two factors, 
then n = k , t ~ t' in M and we can rearrange the 
order of the 𝑏𝑖 's due to 𝑎𝑖 ~ 𝑏𝑖  in R for each 

i∈{l,2...,n}. 
 
As stated in Atani and Farzilipour 2006, if an R 
module M is a MFU, R must mandatory be a 
MFU. So, when seeking for the factorizability of 
an R module, let's suppose from the beginning 
that the R ring is a MFU. If R is a MFU, we state 
that the next [UFI'] rule means [UFI]. 
 

3. FACTORİZATİON OF MODULES 
 
In this section, we will examine the following 
basic characterization of the factorization of 
module and its implementation to some patterns. 
 
Theorem 3.1 Let M be a nonzero module on a 
MFU R that providies the [UFI] rule. That is, the 
next rules are equivalence: 
 
1-) M is factorization of over R;  
2) Each item unreducible of M is primal; 
3) for some double of items a ∈ R and h ∈ M,  

g.c.d. {a,h) ∈ M;  
4) for some double of items a ∈ R and h ∈ M, 

l.c.m {a, h) ∈ M, so the sub-module aM∩ bM is 
cyclic; 
5-) Each item unreducible p of R is prime to M; 
6-) (i) 𝑎, 𝑏 ∈  𝑅 in fact aM ⊆ bM if b|a 

      (ii) for each pair 𝑎, 𝑏 ∈  𝑅 , there exists an 

item 𝑐 ∈  𝑅  in fact 𝑎𝑀 ∩  𝑏𝑀  = 𝑐𝑀 (Atani and 
Farzilipour 2006). 
 
Remark. If M is a MFU, any item c providing (i) 
and (ii) is certainly an L.c.m. {a, b} in R. 
 
Proof. (1) ⇔ (2). Obvious.  
 
 (2) ⇒ (3): If m = 0 so, g.c.d. {a, m) ~ a for each 

a ∈ R. If m = 𝑏𝑚0 ≠ 0, where b ∈ R and 𝑚0 is an 
unreducible item of M, then g.c.d. {a, m} ~ g.c.d. 
{a, b} = d ∈ R. Obviously, d is a widespread 
divider of a and m. Suppose d' is other 
widespread divider of a and m, and write m = 
𝑏𝑚0=d'm' for some m' ∈ M. Then d' | b so d'| d, 

since  𝑚0 is primal and d = g.c.d. {a, b}. 
Consequently, d~g.c.d. {a,m}; hence (3) holds. 
 

 (3) ⇒ (4): If a = 0 then L.c.m. {a, m) ~ 0 ∈ M for 

each m ∈ M . For    0 ≠ a ∈ R and m ∈ M let d ~ 

g.c.d. {a, m}. So, for some a' ∈ R and m' ∈ M in 
fact a = da' and m = dm' in fact g.c.d. {a', m'} ~ 1. 
It can now be confirmed that m'= a'm is an L.c.m. 
{a, m}. 
 

 ((4) ⇒ (5): Let 𝑝 ∈  𝑅 ,p be an unreducible item, 

in fact p|a ∈ R and m ∈ M. 
 

 (5) ⇒ (6): (i) Let 𝑎, 𝑏 ∈  𝑅  in fact aM ⊆ bM . 
Assuming b ≠ 0, b | A. Assuming b ≠ 0, b | a𝑚0 

for any unreducible item 𝑚0∈ M, hence a𝑚0 for 
every principal factor p of p|b. By (5), a for every 
principal factor p of p|b; so, b|A. 
 

(ii) If a = 0 or b = 0, then trivially c = 0. Asserting 
that a ≠ 0 and b ≠ 0, put c ~ L.c.m. {a, b} and d 
~g.c.d. {a, b}. So, aM∩ bm⊇cM and c = a'b = ab', 
where a' = a|d and b' = b|d If w is any nonzero 
item of M in fact w = am = bm' ∈ aM∩ bm , then 
a'm = b'm' | b'm' and (a', b') ~ 1, a' | m' with the 
just like argument as in the proof of part (i). 
Eventually, c = a'b divides w = bm'. Accordingly, 
aM∩ bm⊆cM and (ii) is true. 
 

 (d)  (6) ⇒ (2) ⇒ (1): If 𝑚 ∈  𝑀  , m is an 
unreducible item, in fact am ' = bm for any a,b ∈ 

R and m ' ∈ M in fact am ' = bm ∈ aM∩ bm=cM 

for any c ∈ R (6), (ii) and (6), (i), b | c and a | C. 
Because of m is unreducible, a | b and m|m' 
when b ~ c. So m is primal. Hence (2) is true, 
and by part (a) above, (2) ⇒ (1). 
 
Our subsequent conclusions provide some 
fundamental information about the factorization 
of modules. Most of these have anyway been 
debated and proven in (Fletcher 1969); but, 
some of the proofs are uneventually long. 
 
Theorem 3.2 We propose that each module in 
the consequences is a nonzero module. 
 
Proof. See [13]. 
 
Corollary 3.1 Each cyclic module Rm on a MFU 
Rm is a MFU in which each primal item is a part 
of M. 
 
Proof. See (Kaplansky 1970) 
 
Corollary 3.2 Each vector space is a (trivial) 
MFU in which each nonzero vector is primal. 
 
Proof. See [13]. 
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Corollary 3.3. Let K be the quotient space of a 
MFU R and let M be an R-sub-module of K. In 
this case, M is factorization of necessary and 
sufficient condition it is cyclic. Therefore, an ideal 
of R is a MFU on R necessary and sufficient 
condition it is a basic ideal. 
 
Proof. For any nonzero pair of items x = a|b and 
y = c|d of M , we have 0 ≠ bcx= ady ∈ Rx ∩ Ry . 
M has at most one cyclic sub-module produced 
by a primal item. It is now easy to see Corollary 
3.3. 
 
Corollary 3.4 Each pure sub-module N of a 
factorization of module M on a MFU R is also a 
factorization of R-module, and each unreducible 
element here remains unreducible in M. 
 
Proof. It is obvious that N providies [UFI']. For 
some a ∈ R and m ∈ M, aN∩Rm= (aM ∩ N) ∩ 
Rm = (aM ∩Rm) ∩N=Rx∩N=Rx by (4) of 
Theorem 3.1 for some x∈M and of purity N. 
Therefore, N is factorization of R. The second 
statement is clear. 
 
Corollary 3.5 Let {𝑚𝑖:i∈R} be a class of modules 
on MFU R. In that case, the next expressions are 
tantamount:  
 
1-) 𝑃(i∈I) is factorization on 𝑀𝑖 R;  

2-)  ⨂(i∈I)  is factorization on 𝑀𝑖R; 

 3-) Each 𝑀𝑖  is factorization on R.  
 
Proof. Corollary 3.4 states: (1)⇒ (2)⇒ (3). Let (3) 

hold and let П(i∈I) 𝑀𝑖  = M. If m = (𝑀𝑖) (i∈I)  ∈M, 

where 𝑚𝑖 = 𝑎𝑖𝑏𝑖 ∈ 𝑀𝑖  for some 𝑎𝑖 ∈R and an 

unreducible element 𝑚𝑖 ', then m is g.c.d-free 
necessary and sufficient conditions the set of 
items {𝑎𝑖 | i∈I} in R. So we see that M providies 
[UFI]. Let p be any unreducible item of R in fact p 
| I am in M for any a ∈ R and m = (𝑀𝑖) (i∈I) ∈M, 

so p | a𝑚𝑖  ∈ 𝑀𝑖  for each i. Consequently, p | m 

and hence. П(i∈I) 𝑀𝑖 = M is again factorization of 

due to (5) of Theorem 2.1. So (3) ⇒ (1). 
 
Corollary 3.6 Let M be a only factorization 
Bézout space R, especially a module over a 
basis ideal space. In this case, (1) M is 
factorization necessary and sufficient conditions 
it providies [UFI], and (2) if M is a UFM, so it is a 
completely flat R-module Atani and Farzilipour).  
 

Proof. (1) The requirement is obvious. To 
demonstrate proficiency, let p be an unreducible 
item of R in fact p | am for a ∈ R and m ∈ M . 

Assume that p ∤ a, then there exist any s and t in 

R in fact (p,a) = 1 = ps + at. Now, m = psm + atm 
since p | m; hence M is factorization of by Atani 
2006 of Theorem 3.1. 
 

4. PRIME SUB-MODULES OF 
FACTORIZATION OF MODULES 

 
In this part, we will consider two classes of sub-
modules of a factorization of module that play 
similar roles to the basic principal ideals in a 
MFU (Costa 1976). 
 
Definition 4.1  A suitable sub-module N of a 
torsion-free module M on a ring R is named a 
principal sub-module if x ∈ M means a ∈ R and 
ax ∈ N means x∈ N or a∈ (N:M). Obviously, each 
principal ideal F of a ring R is a principal sub-
module of the R-module with (P∶R)=P. It is also 
obvious that each torsion-free module includes 
the principal sub-module (0). 
 
In the next Result 3.1- Result 3.3, the M modules 
must be unbendable. 
 
Corollary 4.1 If N is a principal sub-module M of 
an R-module, then (N:M) is a principal ideal of R. 
Proof. See (Sharp 2000).  
 
Corollary 4.2 Each maximal sub-module is 
principal (Sharpe 1987). 
 
Proof. See [13]. 
 
Corollary 4.3 A proper sub-module of an M-
module N is pure necessary and sufficient 
conditions it is a principal sub-module with N : M 
= (0). 
 
Proof. See (Kaplansky 1970). 
 
Proposition 4.1 Let M, R be a module over the 
completeness region and m ∈ M in fact Rm ≠M. 
So, m is primal, necessary and sufficient 
conditions Rm is a principal sub-module with Rm 
: M = (0). 
 
Proof. It is obvious (Nicolas 1974). 
 
Proposition 4.2 Let M be a module over the 
integral domain R in fact pM≠ M for each 
nonunitary item p∈ R. In this case, the following 
two expressions are equivalent: 
 
1-) p is principal to M;  
2-) pM is a principal sub-module of M (pM:M) = 
(p).  
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Proof. It is clear to show that (1) implies (2). To 
prove the opposite, we first notice that, p is 
unreducible. In the opposite case, we arrive at 
the PM = M contradiction. Now, the rest of the 
evidence is clear. 
 
Corollary 4.4 Let M be a cyclic module Rx over 
a UFD R and 𝑚 ∈  𝑀 in fact 
 
m ≁ x. So,  Rm is a principal sub-module  
 
⇔m ~ px for any irreducible item p of R,  

⇔ Rm = pM for any unreducible item p of R. 
 
Proof. if we set m = ax to be a ∈ R, in that case 
Rm : Rx = (a) becomes. If Rm is principal, in that 
case (a) the result is a principal ideal with respect 
to 3.1. Therefore, for an unreducible item p ∈ R, 
m ~ px. 
 
Definition 4.2 In a torsion-free module, a 
nonzero principal sub-module is said to be no 
fewer than if it does not contain a suitable 
principal sub-module other than (0). 
 
 Theorem 4.1. Let N be a nonzero sub-module of 
a factorization of R-module M. So, 
 
(1) N is a no fewer than principal sub-module 
with N : M = (0) necessary and sufficient 

conditions N = 𝑅𝜂 
⊂
≠

 𝑀 for a primal item 𝜂 of M. 

 
(2) N is a no fewer than principal sub-module 
with 𝑁 ∶  𝑀 ≠  (0)  necessary and sufficient 

conditions N = pM for an unreducible item 𝑝 ∈  𝑅. 

 
Proof. (1) If N is a no fewer than principal sub-
module with N∶ M = (0), then N includes the 

fundamental item η ∈ M . Since N is no fewer 
than and Rn is principal, so N = Rn. The 
converse is easy to see because any nonzero 
principal sub-module of M included in Rn where 
Rn is primal is pure and so, includes n.  

 
(2) This requirement follows from the fact that a 
nonzero principal ideal N : M must include an 
unreducible item p R in fact pM ⊆ N, where pM is 
a principal sub-module. To prove qualification, let 
N' be a principal sub-module of M included in N = 
pM for an unreducible item of R. We have seen 
that, N is a principal sub-module such that N∶ M 
= (p), so N includes no primal item of M . We 
claim that, (N'∶M) = (p); or else, (N':M) = (0) and 

N' ⊆ N includes a primal item. It is now clear that, 
pM = N = N'. Hence, N = pM is a no fewer than 
principal sub-module such that (N∶M) = (p) ≠ (0). 

As it is well known, an integer field is a MFU 
necessary and sufficient conditions each nonzero 
basic ideal includes a basic ideal (Nicolas 1967). 
 
Theorem 4.2 Let R be a MFU which is not a 
field. An R-module M is a UFM necessary and 
sufficient conditions;  
 
(i-) M includes nonzero principal sub-modules 
(ii-) each of the nonzero principal sub-modules 
has an item of the form pη for a fundamental item 
η∈ M and a principal item p ∈ R. 
 
Proof. This requirement follows from Theorem 
3.1 and the fact that each nonzero principal sub-
module of a factorization of module includes a no 
fewer than principal sub-module. Note that, both 
types of no fewer than principal sub-modules 
include an item of the form pn, as introduced in 
the theorem. To prove the proficiency, let S be 
the class of all primal items in M and put S*  =
 {𝑎𝜂] | 𝜂 ∈  𝑆 𝑎𝑛𝑑 𝑎 ∈ 𝑅 −  {0}}; so, S* ≠  ∅ since 

𝑆 ≠  ∅ by the hypothesis. We notice that, M is 
factorization of necessary and sufficient 

conditions S* = 𝑀 −  {0}. Let, S* 
⊂
≠

 𝑀 − {0} and 

e be a nonzero item of M - S*, so 𝑅𝑒 ⊆  𝑀 − S*. 

In the contrary case, 𝑒 ∈  S* ∩  (𝑀 −  S*) =  ∅  , 
because any primal item divides e in M if 𝑅𝑒 ∩ S* 

≠  ∅ . Then, by exclusion of S*, we extend Re to 
the sub-module N of the maximum of M; such N 
must exist by Zorn's Lemma. We claim that N is 
pure. If this is not the case, so there exists an 
O≠a ∈ R and m ∈ M - N in fact am ∈ aM ∩ N. 
Because of (N + Rm) ∩ S* ≠ 0, there exists an 
element w ∈ S* in fact w = x + rm for some x ∈ N 

and r ∈ R, implying the discrepancy aw = ax + 
ram ∈ N∩ S* = ∅. Therefore, since N is pure, it is 
principal. Because of the hypothesis, we are 
faced with the contradiction that N ∩ S* ≠ ∅. 
Hence, S* = M - {0}, so M is factorization               
of R. 
 

5. CONCLUSION 
 
In this study, the applications of unidirectional 
factorizable features in rings in modules were 
investigated. In later studies, the answer to the 
question of whether R is a commutative and 
unitary ring and M is a torsion-free module, while 
M is a single factorizable module requires R to 
be a smooth factorizable ring, can be examined. 
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productive artificial intelligence technologies such 
as are used. This description will include the 
name, version, model and source of the 
productive artificial intelligence technology, as 
well as all input prompts provided to the 
productive artificial intelligence technology. 
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