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Abstract: In this paper, a mobile robot motion planning method with modified BIT* (batch informed
trees) and MPC (Model Predictive Control) is presented. The conventional BIT* was modified here
by integrating a stretch method that improves the path points connections, to get a collision-free path
more quickly. After getting a reference path, the MPC method is employed to determine the motion
at each moment with a given objective function. In the objective function, a repulsive function based
on the direction and distance of the obstacles is introduced to avoid the robot being too close to the
obstacle, so the safety can be ensured. Simulation results show the good navigation performance of
the whole framework in different scenarios.

Keywords: mobile robot; sampling-based planning; motion planning; BIT*; MPC

1. Introduction

Mobile robots are widely used in many kinds of life scenes. Autonomous motion
planning is the basis for mobile robots to realize various functions. For example, the logistics
robot applied in warehouse should be able to move flexibly and plan the path quickly.
Indoor mobile robots need to respond to the environment in time and avoid obstacles
quickly. The classic algorithm—artificial potential field [1] can find a collision-free path but
it will fall into a local minimum in some cases. Besides, there are two popular categories of
path planning algorithm for mobile robot: graph-search and sampling-based. The graph-
search method first discretizes the map into a grapgh, and then uses the search strategy to
find the path with the least cost. Dijkstra [2] and A* [3] method are the two most commonly
used graph-search path planning algorithm.

Sampling-based method is effective to solve the path planning problem for mobile
robot. It generates path points by sampling in map rather than discretizing the map. In [4],
a probabilistic roadmaps (PRMs) method is introduced. It firstly samples some points
in the map and construct a graph by connecting these points with collision-free edges,
and then use graph-search algorithm to find a path from start to goal state. In [5], the author
proposed a rapidly-exploring random tree (RRT) method. RRT construct a tree that tend
to explore from start state to goal state by randomly sampling. As long as there is a path
from the starting state to the goal state, RRT can always find a collision-free path as the
number of iterations increases. However, in the process of exploring, there are many
useless points added to the tree due to the randomness of sampling, and the tree is hard to
explore to narrow space so it is difficult to get a path through narrow corridor. To solve
the limitation of random sampling, a heuristic function guided method based on RRT is
proposed in [6]. RRT-connect builds two random trees that rooted at start state and goal
state respectively, and uses greedy strategy on the basis of RRT to speed up the search [7].
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It has been demonstrated that the path generated by RRT-based algorithm is suboptimal [8].
However, in RRT-based methods, the sampling points are randomly generated and there
are a lot of unnecessary exploring, which leads to the inefficiency.

Based on RRT, a lot of optimal planning algorithms have been developed. RRT* uses
a predefined cost function to select the node with the lowest cost as the parent node [9].
After each iteration, the nodes on the existing tree will be reconnected, so as to ensure the
computational complexity and asymptotically optimality. An extension of RRT* called
RRT*-smart is proposed in [10], which can accelerate the convergence rate by optimizing
the path and sampling in a smarter way. RRT*-connect proposed in [11] unifies the RRT-
connect and RRT*. It’s optimality has been demonstrated in the paper and some real
implementations show good performance of this algorithm. Sampling-based A* [12],
applies the idea of sampling to the classic graph-search algorithm A*. A heuristic function
is used to optimize the connection strategy, which makes the search biased to the target
state area. FMT* (Fast Marching Tree) [13] combines the advantages of RRT and PRM
algorithm, and it can get better solutions than RRT* with fast convergence rate. However,
in these methods, the generated sample points do not always improve the current path
solution. Informed RRT* [14] firstly uses RRT* to get a initial path, and then transform all
the next samples into an ellipsoid which is determined by the start state, goal state and
path cost. The nodes sampled in this ellipsoid is proved to be able to improve the path
so the asymptotically optimality is guaranteed. BIT* (batch informed trees) [15] get path
nodes in a batch of samples using the heuristic function as in A* and find path solution
with a serious of batches. Every exploring in the map is ensured to improve the current
path quality.

Informed RRT* and BIT* both improve the path continuously through iterations. But,
once the cost of initial path solution is large, the convergence may slow down. Motivated
by these two methods, we use the sampling strategy of informed RRT* in the process of
BIT*. Then a stretch method is combined with BIT* algorithm, which can reduce the cost
of initial path and further constrain the sampling area to deal with the randomness of
sampling more effectively, speeding up the convergence rate.

After getting a reference path, trajectory tracking plays an important role in navigating
the mobile robot. The objective of trajectory tracking is to make the robot tracking the
reference path with appropriate speed. In recent years, MPC-based method is widely used
in trajectory tracking and motion control of mobile robots. According to the system model
and current state, MPC predicts the future state for a period of time, and then solves an
optimization problem to obtain the optimal control input. MPC can also be used to reduce
energy consumption from the actuator [16]. In [17], a global reference path is generated by
potential field method. Kinematic controller as well as dynamics controller were designed
for motion control and trajectory tracking. The optimal control input is obtained by solving
a quadratic programming problem. In [18], the motion command is generated based on
the surface eletromyography (sEMG) signals and a no target Bug algorithm is used to get a
path. In these two methods, MPC is exploited only for tracking reference trajectory, but the
obstacles is not considered. In [19], the VFH*-based method make the robot decelerate to
ensure safety by detecting the nearest distance between the robot and nearby obstacles.
In [20], a nonlinear MPC method is utilized for trajectory tracking and motion control. This
method ensures obstacle avoidance by using a potential field to penalize the motion to
obstacle area.

Inspired by above methods, we design a repulsive function based on the direction
and distance of the obstacles, which is convenient to use in 2D grid map. It is added to the
objective function of our MPC strategy to avoid possible collision. The main contribution
of this paper are as follows:

• During connecting the path points, the initial path may be tortuous so it always
leads to unnecessary path cost. We adopt a simple stretch method to modify the
connecting process and reduce the initial path cost. More importantly, the initial path
cost determines the elliptical region in which samples in next iteration will improve
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the path. The modified BIT* with the stretch method can further reduce the size of
elliptical region to accelerate the converging rate.

• After obtaining the global reference path with above method, we use the cubic poly-
nomial curve to fit the reference path points in the robot coordinate system to obtain a
local reference path which is smoother for a mobile robot to track.

• Then a nonlinear MPC method is adopted for trajectory tracking and speed generation
considering obstacles near the robot.

A simplified illustration of the whole framework is shown in Figure 1.

Figure 1. The whole framework: Firstly the modified BIT* (batch informed trees) planner get a path according start state,
goal state and the map. Then the MPC (Model Predictive Control) optimizer find the optimal control sequence v and ω and
send them to the mobile robot as motion command.

The rest part of this paper is structured as below: In Section 2, three main parts of
the proposed modified BIT* planner are introduced. The sample strategy of informed
RRT* is introduced in Section 2.1. Section 2.2 shows the process of the stretch method.
In Section 2.3, the modified BIT* algorithm is given. In Section 3, the MPC is implemented
and the objective function is designed in Section 3.2. Section 4.2 compares the path found by
three planners in two environments and demonstrates the better performance of proposed
modified BIT*. The effectiveness of the whole framework is verified in Section 4.3. Finally,
Section 5 makes a summary.

2. Modified BIT* Planner

In this section, in order to explain our stretch method and the modified BIT* planner,
we firstly introduce the sampling strategy of basic informed RRT*. Then the second
subsection explains the principle of this novel stretch method and how it can improve thee
current path and accelerate the converging rate. The modified BIT* with the stretch method
is also introduced in this section.

2.1. Sampling Strategy of Informed RRT*

In order to solve the sampling randomness of RRT* and improve converging rate.
Informed RRT* is introduced in [14]. Firstly, it uses original RRT* to generate a initial
path. After that, an ellipse with the start point and end point as the focal points and the
path cost as the long axis is determined. For mobile robot’s path planning in 2-D space,
we use X to represents the set of every point on the map. g(x) and h(x) denotes the cost
from start state xstart to a state x ∈ X and the cost from x to goal state xgoal . For example,
in Figure 2, we use Euclidean distance as cost function and Cbest denotes the length of
current path solution (Cbest is infinity when there is no path solution). Then, an ellipse can
be drawn. According to the properties of ellipse, we can get the following inequality:

||x− xstart||+ ||xgoal − x|| < Cbest (1)
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where x is inside this ellipse. Then we define the estimated cost f (x) = g(x) + h(x). It is
obvious that the estimated cost of x is less than current path cost Cbest. So points within the
ellipse have the potential to improve the current path solution.

Figure 2. Informed RRT* (rapidly-exploring random tree): Once a path is generated, an ellipse is
determined by the start state, goal state and path cost.

In next iterations, the algorithm continue sampling to get a better solution. Rather
than sampling in the whole map, the sampling point will be constrained in a unit circle and
then they will be transformed to the ellipse area. The transformation process is illustrated
in Algorithm 1 [14].

Matrix U and V is obtained by singular value decomposition of matrix M. The
expression of M is shown as below:

M = mlT

m = (xgoal − xstart)/||xgoal − xstart||2
(2)

Algorithm 1: InformedSample(xstart, xgoal , Cbest).

1 if Cbest < ∞ then
2 Cmin ← ||xgoal − xstart||2;
3 xcenter ← (xstart + xgoal)/2;
4 xcircle ← SampleInUnitCircle ;

5 L← diag{ cbest
2 ,

√
c2

best−c2
min

2 };
6 U, V ← SVD(M);
7 C ← Udiag{1, det(U)det(V)}VT ;
8 xsrand = CLxcircle + xcenter;

9 else
10 xsrand ← SampleInMap;

11 return xsrand;

2.2. Stretch Method

The process of stretch method is illustrated in Figure 3. Based on informed RRT*,
we can obtain that the converging rate partially depends on the size of the ellipse area.
In Figure 2, the current path is tortuous and it may lead to a large Cbest. So we try to revise
the current path to reduce it’s length. For the example in Figure 3, the black solid line is
the original path. If there are no obstacles between the adjacent path points, we firstly
connect xstart and x3, and then find the new next path point in the straight line. Actually,
the new x

′
2 only needs to be on the segment xstartx3 to ensure that the new path is shorter

than the original path. In order to roughly maintain the density of path points, we choose
the position of x

′
2 to make

xstartx
′
2

x′2x3
=

xstartx2

x2x3
(3)
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and then we replace x2 with new path point x
′
2. Similarly, start from x

′
2, the new path points

x
′
3, x

′
4 satisfy x

′
2x
′
3

x′3x4
=

x
′
2x3

x3x4
and x

′
3x
′
4

x′4xgoal
=

x
′
3x4

x4xgoal
. Finally, we connect x

′
4 to the goal directly.

The red solid line is the new path after the stretch method. Obviously, it is easy to prove
that this new red path is shorter than the original one by using the principle that the sum
of any two sides of a triangle is greater than the third side.

(a) Stretching process without obstacles. (b) Stretching process with obstacles. (c) Feasible method to find the nearest
point to obstacle.

Figure 3. The process of stretching method in different situation.

In most cases, there are obstacles in the environment, so we must consider this
common situation. For example, in Figure 3b, the straight line between xstart to x3 will
collide with the obstacles, so we find a point between x2 and x3 that could avoid collision
when connecting with xstart. Then we select the point that is nearest to the obstacle as
the next point and repeat this process until arriving to goal. In Figure 3a,b, the black
line is the original path and the red line denotes the new path after stretching. We can
obtain that the new path length is shorter that the original path. The new path length will
be used as Cbest in the process of InformedSample shown in Algorithm 1. For example,
in Figure 4, the black ellipse is the boundary of next sampling area generated by the original
path according to the strategy of informed RRT*, and the red ellipse is the boundary
generated by the modified path after stretch method. The sampling points in the red ellipse
region are more likely to shorten the current path and speed up the convergence rate.

Figure 4. The boundary of sampling area determined by the modified path after stretch method.

The complete algorithm is shown in Algorithm 2. This algorithm processes the stretch
method through a loop until arriving to goal. P is the original path. ’NoCollision’ in line
5 is the process to check if there is obstacle between two path points. ’GetNext’ is to find
a new path point to replace the original as is shown in Figure 3a, and the principle of
selecting is described above. ’Divide’ in line 8 is to divide the line between two adjacent
path point into several equal parts and then a series of path points are stored in a container
(TemPoints in line 8). Next procedure is to find xt that can avoid collision among these path
points. The black arrow in Figure 3b indicates the direction of the search. ’NeareatToObs’
is to get the nearest point to obstacle between xcurrent and xt.
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In real implementation, it may be difficult to get the nearest point to obstacle from the
information of grid map. There is a feasible method. For the example in Figure 3c. Firstly,
we connect the xcurrent and xt−1 and then divide the straight line into a series path points.
Next, we check these points one by one to see if they locate in collision area. Among the
path points which are in collision area, we choose the point that nearest to xt−1 as “The
position of collision in last straight line” and calculate the distance from it to xcurrent as d1.
Then, in current straight line between xcurrent and xt that can avoid collision, we select the
point that can satisfy d2 = d1 as the nearest point to obstacle. Moreover, the obstacle cells
in the map are enlarged by the robot radius r to keep the robot away from obstacles.

Algorithm 2: Stretch(P).

1 i← 0; Num← NumOfPoints(P);

2 NewPath +← xstart;
3 xcurrent ← xstart;
4 while i < Num− 1 do
5 if NoCollision(xcurrent, P[i + 2]) then
6 xnew = GetNext(xcurrent, P[i + 2]);

7 else
8 TemPoints← Divide(P[i+1], P[i+2]);
9 for xt ∈ TemPoints do

10 if NoCollision(xcurrent, xt) then
11 xnew = NearestToObs(xcurrent, xt);
12 break;

13 xcurrent ← xnew;

14 StretchedPath +← xnew;
15 i = i + 1;

16 StretchedPath +← xgoal ;
17 return StretchedPath;

2.3. Modified BIT*

BIT* algorithm construct a tree that explores from start state to goal state. It maintains
a vertex queue and an edge queue, then continuously select edges that have the potential
to improve the current path from the edge queue [15]. We present a modified BIT* with the
informed sample strategy as well as stretch method and the process of this modified BIT*
is illustrated in Algorithm 3.

There are some notations used in the algorithm. The exploring tree consists of ‘Vertices’
and ‘Edges’. gτ(v) is the cost from start to v through the current tree. ‘c(v, x)’ is the cost
of an edge (v, x). ‘ĥ(x)’ is the heuristic function that guide the tree to explore towards the
goal and we use the distance between x and goal to estimate it.

Many factors can be considered in path cost. In Section 2.2, the stretch method have
been introduced to reduce the twists and turns of the path. And in our simulation, we use
differential wheeled mobile robot to verify our modified BIT*. So we only consider the
path length in gτ(v) and we use the path length from start state to v to calculate it. Actually,
for other robots which have steering angle limits, it is necessary to consider the curvature
of the path in the cost function g(x) and c(v, x).

In Algorithm 3, ‘BestValueInVQ’ is to get the lowest estimated cost in ‘VetexQueue’
according to gτ(x) + ĥ(x), and ‘BestVertex’ return the vertex in ‘VertexQueue’ with low-
est estimated cost. ‘BestValueInEQ’ is to get the lowest estimated cost in ‘EdgeQueue’
according to gτ(v) + c(v, x) + ĥ(x). Line 8 means that the best vertex has the potential
to expand to get a better edge, so ‘Explore’ is to connect the best vertex and the near
points in ‘Samples’ with radius r to get new edges, and then new edge (v, x) that satisfy
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gτ(v) + c(v, x) + ĥ(x) < Cbest is added to ‘EdgeQueue’. r can be defined as a variable and
the specific expression is given in [15]. Then, the algorithm have to check if the best edge is
able to improve the path (line 12). If the best edge can not improve the path, the current
EdgeQueue and VertexQueue would be cleared and ‘Samples’ would be updated in next
iteration. Algorithm 3 shows a simple description of our proposed modified BIT*.

Compared to original BIT*, we use a simple stretch method shown in
Algorithm 2 when getting a new path, which is able to reduce the twists and turns as
well as the path cost. The cost of stretched path will be used as Cbest to limit the sample area
in next sampling process, accelerating the converging rate. In real implementation, the col-
lision checking is necessary though it is not shown in Algorithm 3. Besides, the stretch
method would be adopted only when a new path is found to reduce computational cost.

Algorithm 3: Modified BIT*.

1 Vertices← {xstart}; Edges← ∅; Samples← {xgoal};
2 EdgeQueue← ∅; VertexQueue← ∅; Cbest = ∞;
3 while i++ < Iterations do
4 if EdgeQueue ≡ ∅ and VertexQueue ≡ ∅ then
5 Samples← InformedSample(xstart, xgoal , Cbest);
6 Vold ← Vertices;
7 VertexQueue← Vertices;

8 while BestValueInVQ ≤ BestValueInEQ do
9 VetexQueue −← BestVertex;

10 Explore(BestVertex);

11 Get BestEdge from EdgeQueue and remove it;
12 if The BestEdge can improve current path then
13 Add BestEdge to Edges and update current tree;
14 if GetNewPath then
15 NewPath = GetPath(Edges, Vertices);
16 StretchedPath = Stretch(NewPath);
17 Cbest = CalculateCost(NewPath);

18 else
19 EdgeQueue = ∅;VertexQueue =∅;

20 return StretchedPath;

3. MPC Method
3.1. Kinematic Model

We select the kinematic model of a mobile robot as follows: ẋ
ẏ
θ̇

 = R(θ)

 vx
vy
ω

 (4)

where

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (5)

(x, y) represents the position of the mobile robot in the world coordinate system and the
θ denotes the yaw angle. vx, vy represent the longitudinal velocity and lateral velocity
respectively. Noticed that we set the lateral velocity vy to 0, and we use v in robot coordinate
system to replace vx. ω is the angular velocity of mobile robot. The two systems are shown
in Figure 5.
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Figure 5. The coordinate system of a mobile robot.

After discretization of the above model, it can be obtained x(k + i)
y(k + i)
θ(k + i)

 =

 x(k + i− 1)
y(k + i− 1)
θ(k + i− 1)

+

 cos θ(k + i− 1)∆T 0
sin θ(k + i− 1)∆T 0

0 ∆T

u(k + i− 1) (6)

∆T is the sampling time. We use u(k + i− 1) = [v(k + i− 1), ω(k + i− 1)]T to denote the
control input at discrete time step k + i− 1 [21].

3.2. Implementation of MPC

The global planner gets a series of path points. In order to make the trajectory of the
robot more smoother and calculate the tracking error more conveniently, we can preprocess
these path points. A feasible method is to fit the path points with the cubic polynomial
curve. It should be noted that it is not necessary to fit all the path points, but to fit the
path points within a certain distance in front of the robot, and then we can transform
these reference path points to the robot coordinate system Xr–Yr which can be determined
by the current state (xc, yc, θc)—the current position and yaw angle in global coordinate
system. For example, a reference path point (xg, yg) in the global coordinate system can be
transformed to (x, y) in the robot coordinate system with following equations:

x = (xg − xc) ∗ cos(θc) + (yg − yc) ∗ sin(θc)

y = (yg − yc) ∗ cos(θc)− (xg − xc) ∗ sin(θc)
(7)

Then, we use cubic polynomial curves to fit these path points after the transformation
to the robot coordinate system

f (x) = m0 + m1x + m2x2 + m3x3 (8)

m0, m1, m2 and m3 are the coefficients of the polynomial, and they will be calculated
online as the algorithm runs. In this way, we can use the analytic form of path f (x) to easily
calculate the tracking error and yaw error. An important task of MPC is to reduce tracking
error. In Figure 6, the red dotted line denotes the local reference path f (x). The tangent
direction of f (x) represents the desired yaw angle in Xr–Yr. (xr(k), yr(k)) is the initial
position in Xr–Yr, which is actually (0, 0). xr(k + i), yr(k + i) and θr(k + i) represent the
predicted position and yaw angle respectively in Xr–Yr at time step k + i. As is shown in
the figure, we can define the tracking error and yaw error at discrete time step k + i:

e(k + i) = f (xr(k + i))− yr(k + i)

eθ(k + i) = arctan( f
′
(xr(k + i)))− θr(k + i)

(9)

Noticed that arctan( f
′
(xr(k + i))), θr(k + i) ∈ [−π, π]. The predicted state

(xr(k + i), yr(k + i), θr(k + i)) can be obtained through the kinematic Equation (6)
(i = 1, 2, 3...Np).
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Figure 6. The definition of tracking error and yaw error.

The objective function is crucial for the performance of mobile robot. In our imple-
mentation, we choose the form of objective function as follows:

min J =
Np

∑
i=1

a1e2(k + i) +
Np

∑
i=1

a2e2
θ(k + i) +

Ne

∑
i=1

∆uT(k + i)A3∆u(k + i)

+
Ne

∑
i=1

a4[cos(θ1 −ω(k + i)∆T)/g(d1) + cos(θ2 −ω(k + i)∆T)/g(d2)]

+
Np

∑
i=1

a5(v(k + i)− vd)
2 +

Ne

∑
i=1

a6v(k + i)/g(min(d1, d2))

(10)

s.t 0 ≤ v(k + i) ≤ vmax

−ωmax ≤ ω(k + i) ≤ ωmax

− amax∆T ≤ ∆v(k + i) ≤ amax∆T

− αmax∆T ≤ ∆ω(k + i) ≤ αmax∆T

(11)

In Equation (10), Np denotes the prediction horizon, and Ne is the execute horizon.
The first and second terms is to penalize the tracking error and yaw error. The robot
should follow the reference trajectory generated by the global planner with small error,
and the heading angle should fit the tangent direction of the trajectory. a1 and a2 are are
two adjustable constant parameters.

In the third term of Equation (10), ∆u(k + i) represents the change of control input
(linear velocity and angular velocity) at two adjacent moments and ∆u(k + i) = u(k + i)−
u(k + i− 1). The purpose of this term is to penalize the drastic variation of control input,
so that the robot can move steady. A3 is a 2× 2 constant diagonal matrix which can be set.

The fourth term is the repulsive function based on the direction of the obstacles. In our
simulation, we do collision checking according to the cost map. Where there is an obstacle
in the map, there will be a high “cost value”. The obstacle constraints cannot be expressed
directly in analytic form, and it may be not convenient to add the obstacle constrains in the
optimization. So we designed the repulsive function to penalize the linear velocity and
angle velocity that make the robot move towards the obstacle. Actually, we only consider
the nearest obstacles on the left and right sides in front of the robot. g(d) is a function
of the obstacle distance d, which is positively correlated with d. d1 and d2 represent the
distances to the nearest obstacle on the left and right respectively. θ1 and θ2 denote the
angle between the current velocity direction of the robot and the direction of the nearest
obstacle on the left and right sides respectively. In our implementation, we choose the form
of g(d) as follows:

g(d) =

{
p ∗ d + q d ≤ threshold
∞ d > threshold

(12)

p and q are both positive constants. q is set so that g(d) is always greater than 0 and it is
set to a small value. The obstacles beyond the threshold can be ignored. In order to avoid
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collision with obstacles, the robot need to choose appropriate angular velocity to prevent it
from being too close to the obstacles. For example, in Figure 7, suppose the robot is more
affected by the repulsive function of the obstacle on the left side, the angular velocity that
makes the robot approach the left obstacle will be more penalized by the repulsive function.
So the angular velocity is set to negative, making the robot turn right to avoid getting close
to the obstacle.

Figure 7. The situation with obstacles.

The last two terms of Equation (10) is to make the robot maintain a desired stable
speed during the movement and slow down when approaching obstacles. The desired
speed vd can be set to a value smaller than the maximum speed of the robot according to
different requirements. In addition, the robot needs to slow down according to the distance
from the nearest obstacle. In summary, the parameters a1, a2, A3, a4, a5 and a6 in objective
function determine different optimization objectives. For instance, when a1 and a2 are
increased, the robot tends to follow the reference path. When a4 is increased, the robot is
more likely to respond to the nearby obstacles, resulting in the actual path deviates from
the reference path.

Equation (11) are the constrains of the optimization problem. vmax and ωmax are
the maximum linear velocity and maximum angular velocity of the mobile robot respec-
tively. amax and αmax are the maximum linear and angular acceleration respectively. These
constraints are determined by the robot hardware and cannot be violated.With objective
function (10) and constraints Equation (11), the optimal control inputs can be calculated by
solving the nonlinear programming problem.

In our work, we design the controller based on kinematics in ROS, and then send the
linear velocity and angular velocity to the bottom controller of the robot in the simulation
platform. The bottom controller based on the dynamics of the robot has been designed so
we do not care about it here.

4. Simulation
4.1. Simulation Setting

In order to show the performance of our proposed method, we implemented RRT*,
BIT* and modified BIT* in ROS (robot operating system) and use them as global planner to
generate reference path. The map is generated through gmapping in ROS and the resolution
is 0.05 m. Where there is an obstacle in the map, there will be a high “cost value”. So we can
do collision checking according to the cost map. The environment and paths are displayed
in rviz, which is a popular visualization tool in ROS. In this section, firstly we use RRT*,
BIT* and the proposed modified BIT* to generate reference global path. In this paper, we
take the path length as the path cost, and we compare the path length, the iterations and
computational time in difference algorithm to verify the better performance of the modified
BIT*, as the less iterations means faster converging rate.

Then, we use the modified BIT* to obtain reference path. MPC method is applied for
trajectory tracking and motion control, and the performance of our proposed framework
will be illustrated in different scenario.
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4.2. Modified BIT* Planner

• Few obstacles with narrow channel: Figure 8 shows the environment with fewer
obstacles and a narrow channel. The coordinates of the start point and the goal
point are (0 m, 0 m) and (0 m, 5.5 m) respectively. The green solid line is the path
generated by the global planner. From the map, we can see that there are two obstacle
between start and goal, and the optimal path for mobile robot is to across the narrow
channel between the obstacle. For sampling-based planning algorithm that uses a
random sampling method like RRT*, the sampling points are rarely located in the
narrow channel. So it is difficult to find an good path when iterations are not enough.
In Figure 8a, instead of passing through a narrow channel, the path found by RRT*
after 3000 iterations bypasses the obstacles above to the goal. In addition, this path
has unnecessary twists and turns, which is not suitable for mobile robots. Figure
8b shows the solution of BIT*. Compared with RRT*, BIT* successfully found a path
through the narrow channel and it uses 1600 iterations. However, in our multiple
tests, BIT* does not always find a solution as shown in Figure 8b and sometimes BIT*
can only find a path around obstacles with 1600 iterations. The path from start to goal
in Figure 8c shows the better performance of our proposed method. Benefit from the
stretch method, the modified BIT* can find a shorter and smoother path through the
narrow channel with less iterations.

• Multiple obstacles: In practical applications, mobile robots may need to plan a
collision-free path in environment with multiple obstacles. Based on this requirement,
we design an environment shown in Figures 9–11 with intensive obstacles to test the
performance of the three planners. The coordinates of the start point and the goal
point are (0 m, 0 m) and (−3 m, −2 m) respectively. Firstly, by observing the map,
we can know that there are two kinds of good paths from the start to goal. One is to
across the top left of goal, the other is through the top of the goal. So we show three
different solutions for each planner to see that which kind of solutions these planners
tend to select.

In Figure 9, the paths found by RRT* with 3000 iterations are through top of the goal.
However, the cost of these paths always are higher than those generated by the other two
planners. Besides, some unnecessary turns occur in the path, resulting in relatively high
cost, as shown in Figure 9b,c. In Figure 10, with 1600 iterations, BIT* tend to find paths
through the top left of the goal in most cases, which is shorter than paths found by RRT*.
Modified BIT* can always find shorter path that is through the top left of the goal only with
800 iterations, much less than BIT* and RRT*, as shown in Figure 11. Compared to above
two planners, the path found by modified BIT* is much smoother that is more suitable for
mobile robot. Table 1 shows the average of the 10 planning results of the three planners in
this scenario.

(a) Solution of RRT*, 3000 iterations, path
length = 7.41 m, computational time = 103 ms

(b) Solution of BIT*, 1600 iterations, path
length = 5.64 m, computational time = 94 ms

(c) Solution of modified BIT*, 800 itera-
tions, path length = 5.50 m, computational
time = 78 ms

Figure 8. The performance of three planner in a scenario with few obstacles and a narrow channel.
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(a) path length = 4.07 m, computational
time = 107 ms

(b) path length = 4.10 m, computational
time = 101 ms

(c) path length = 4.25 m, computational
time = 109 ms

Figure 9. Solutions of RRT* in a scenario with multiple obstacles, 3000 iterations.

(a) path length = 4.01 m, computational
time = 89 ms.

(b) path length = 4.02 m, computational
time = 87 ms.

(c) path length = 4.07 m, computational
time = 92 ms.

Figure 10. Solutions of BIT* in a scenario with multiple obstacles, 1600 iterations.

(a) path length = 3.87 m, computational
time =58 ms.

(b) path length = 3.88 m, computational
time = 62 ms.

(c) path length = 3.94 m, computational
time = 66 ms.

Figure 11. Solutions of modified BIT* in a scenario with multiple obstacles, 800 iterations.

Due to the simple stretch method, no matter in the environment with few obstacles or
dense obstacles, our proposed modified BIT* always find shorter path than BIT* and RRT*
with less iterations which is meaning faster converging rate.

Table 1. The average of ten results of three planners.

Planner Path Length (m) Iterations Computational Time (ms)

RRT* 4.16 3000 106.3
BIT* 4.05 1600 90.6
Modified BIT* 3.92 800 64.2
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4.3. Whole Framework

In this section, we use the model of Turtlebot robot in ROS to verify the effectiveness of
our proposed framework. Firstly modified BIT* planner explores a reference path according
to the preset starting point and goal point. Then the MPC method proposed in Section 3.2
calculates the optimal control inputs (linear velocity and angular velocity) and send them
to the robot. Some necessary parameter settings are in Table 2.

Table 2. Parameters in MPC method.

Prameters Value Parameters Value Parameters Value

∆T 0.1 (s) A3 diag{50, 20} p 10
Np 20 a4 40 q 0.05
Ne 2 a5 30 threshold 0.8 (m)
a1 60 a6 2 vmax 0.5 (m/s)
a2 50 vd 0.3 (m/s) ωmax 0.6 (rad/s)

• Few obstacles with narrow channel: Figure 12a shows the map and the reference path
generated by modified BIT* planner. The reference path and actual path of mobile
robot are illustrated in Figure 12b. The coordinates of the start point and the goal point
are (1 m, 1 m) and (0 m, 5.5 m) respectively. Actually, the actual path does not track
the reference path perfectly. Because the repulsive function is added into the objective
function of MPC method, the actual path deviates from the reference path in the place
close to the obstacle, so that the robot will not be too close to the obstacle to avoid
possible collision. Moreover, the ratio of parameters a1, a2 and a4 is also an important
factor, and the robot may tend to stay away from the obstacles rather than track the
reference trajectory in this situation. So we can adjust the ratio of a1, a2 and a4 to make
the robot behave differently. Figure 12c,d show the variation of linear velocity and
angular velocity with time respectively. During 6s to 8s, the robot approaches the
obstacle, and according to the design of the objective function, the robot will decelerate
appropriately. At the same time, the angular velocity will be adjusted according to the
position of the obstacle, resulting in fluctuation. Most of the time, the robot will move
at the desired speed (0.3 m/s).

• Multiple obstacles: Figure 13a shows an environment with many obstacles and
the reference path. Mobile robot need to react to these obstacles in time when it
moves along the reference path. In Figure 13b, the blue solid line represents the
reference path, and the red dotted line represents the actual path of the robot. The
coordinates of the start point and the goal point are (0.7 m, 0.45 m) and (−3 m,
−1.95 m) respectively. Similar to the previous case, the actual path does not exactly
coincide with the reference path. There is slight deviation in the three sections near the
obstacle to ensure safety. In Figure 13c, due to its proximity to the obstacle, the robot
slows down during 1 s–2.5 s, 6 s–7.5 s and 13 s–15 s, which shows that the robot can
decelerate in time when approaching multiple obstacles. As the robot approaches the
obstacle and decelerates, the angular velocity of the robot will fluctuate, so as to adjust
the direction of movement and keep away from the obstacle, which can be seen in
Figure 13d.
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(a) The map and reference path
in rviz.

(b) The reference path and actual path
in X-Y coordinate.

(c) Linear velocity. (d) Angular velocity.

Figure 12. The performance of the whole framework in a scenario with few obstacles and a narrow channel.

(a) The map and reference path
in rviz.

(b) The reference path and actual path
in X-Y coordinate.

(c) Linear velocity. (d) Angular velocity.

Figure 13. The performance of the whole framework in a scenario with multiple obstacles.

The performance in these two case shows the effectiveness of the proposed methods.
On the one hand, the mobile robot can find shorter path with less time. On the other hand,
the robot is able to react to the obstacles in time to avoid possible collision, as well as track
the reference path.

5. Conclusions

In this paper, for motion planning of mobile robot, we firstly proposed a modified BIT*
with a stretch method. The stretch method can further reduce the size of the sampling area
when BIT* find a new path, and each sample point in this area have the potential to improve
the current path, so it can find better solution with less iterations and computational time.
Besides, the stretch method can also avoid some unnecessary turns in the path. With this
method, a reference path suitable for mobile robot can be obtained. Next, we use MPC
method for trajectory tracking and motion control. Even though the obstacles in the map
are enlarged, the repulsive function in the MPC method based on the distance and direction
of obstacles is added to the objective function to avoid being to close to obstacles and ensure
safety. Finally, we compare the performance of RRT*, BIT* and the modified BIT* in two
different environment and the results show that the proposed modified BIT* can find better
path with faster converging rate. The effectiveness of the whole framework is also verified
both in the environment with few obstacles and multiple obstacles. The results show that
the actual trajectory may deviate from the reference trajectory due to the repulsive function,
but parameters could be adjusted to balance the tracking performance and the tendency to
keep away from obstacle. In future work, we plan to verify and test our method on a real
robot platform, and improve and upgrade our method for different robots. Furthermore,
we will consider the dynamics of mobile robot in our controller design.
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