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In this article, we obtain improved Chen-Ricci inequalities for submanifolds of generalized space forms with quarter-symmetric
metric connection, with the help of which we completely characterized the Lagrangian submanifold in generalized complex
space form and a Legendrian submanifold in a generalized Sasakian space form. We also discuss some geometric applications
of the obtained results.

1. Introduction

One of the most basic problems in submanifold theory is to
develop a simple relationship between the extrinsic invari-
ants and the intrinsic invariants. The sectional curvature,
the scalar curvature, and the Ricci curvature are the main
intrinsic invariants while the squared mean curvature is
the main extrinsic invariant.

Chen obtained the following important bound of the
Ricci curvature Ric in terms of the mean curvature H for
Lagrangian submanifolds in complex space forms [1]:

Ric ≤ m − 1ð Þc + m2

4 Hk k2, ð1Þ

where c is the constant holomorphic sectional curvature of
the complex space form.

Further, he discussed the geometry of a Lagrangian sub-
manifold satisfying the equality case of the inequality under
the condition that the dimension of the kernel of the second
fundamental form is constant. The inequality (1) is known
as the Chen-Ricci inequality. This inequality attracted many
researchers due to its geometric importance [2–12].

Deng [13] improved the above inequality as

Ric Uð Þ ≤ m − 1
4 c +m Hk k2� �

: ð2Þ

In [14], Deng further extended his result for Lagrangian
submanifolds in quaternion space forms. In [15], Tripathi
improved the inequality in the case of curvature-like tensors.
In [6], Mihai and Radulescu obtained the same relation in
Sasakian space forms using semisymmetric connection as

Ric Uð Þ + m − 2ð Þα U ,Uð Þ + trα ≤
m − 1
4 c + 3 +m Hk k2� �

:

ð3Þ

As the curvature invariants are of great interest in theo-
retical physics (see [16]), the above studies motivate us to
obtain a complete characterization of Lagrangian submani-
fold in generalized complex space form and a Legendrian
submanifold in a generalized Sasakian space form.
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2. Preliminaries

Let N be a Riemannian manifold and �∇ be a linear connec-
tion on N . Then, �∇ is said to be a semisymmetric connection
if its torsion tensor T satisfies

T U , Vð Þ = π Vð ÞU − π Uð ÞV , ð4Þ

for a 1-form π, then the connection �∇ is called a semisym-
metric connection [17]. Let g be a Riemannian metric on
N . If �∇g = 0, then �∇ is called a semisymmetric metric con-
nection on N . The semisymmetric metric connection �∇ on
N is given by

�∇UV = �∇UV + π Vð ÞU − g U , Vð ÞΓ, ð5Þ

for any U , V on N , where �∇ denotes the Levi-Civita connec-
tion with respect to Riemannian metric g and Γ is a vector
field. Further, �∇ is said to be a semisymmetric nonmetric
connection if it satisfies

�∇UV = �∇UV + π Vð ÞU : ð6Þ

Moreover, the linear connection �∇ on a Riemannian
manifold N with Riemannian metric g is said to be a
quarter-symmetric connection if its torsion tensor T is given
by

T U , Vð Þ = �∇UV − �∇VU − U , V½ �, ð7Þ

which satisfies

T U , Vð Þ = π Vð ÞϕU − π Uð ÞϕV , ð8Þ

such that π is a 1-form given by

π Uð Þ = g U , Γð Þ, ð9Þ

where Γ is a vector field and ϕ is a (1,1) tensor field.
Then, we can define a special quarter-symmetric connec-

tion by

�∇UV = �∇UV + ψ1π Vð ÞU − ψ2g U , Vð ÞΓ, ð10Þ

where ψ1 and ψ2 are real constants.

Remark 1. We notice from (5) that [18]

(1) if ψ1 = ψ2 = 1, then a quarter symmetric connection
becomes a semisymmetric metric connection

(2) if ψ1 = 1 and ψ2 = 0, then a quarter-symmetric con-
nection becomes a semisymmetric nonmetric
connection

Remark 2. It is also worthy to mention here that the quarter
symmetric connections generalized several well-known
connections.

The curvature tensor �R with respect to �∇ is

�R U , Vð ÞZ = �∇U
�∇VZ − �∇V

�∇UZ − �∇ U ,V½ �Z: ð11Þ

In the same way, we can also define the curvature tensore�R.
Let

β1 U , Vð Þ = �∇Uπ
� �

Vð Þ − ψ1π Uð Þπ Vð Þ + ψ2
2 g U , Vð Þπ Γð Þ,

β2 U , Vð Þ = π Γð Þ
2 g U , Vð Þ + π Uð Þπ Vð Þ,

ð12Þ

are ð0, 2Þ tensors. Then, the curvature tensor of N is given by
[19]

�R U , V , Z,Wð Þ = e�R U , V , Z,Wð Þ + ψ1β1 U , Zð Þg V ,Wð Þ
− ψ1β1 V , Zð Þg U ,Wð Þ + ψ2β1 V ,Wð Þg U , Zð Þ
− ψ2β1 U ,Wð Þg V , Zð Þ + ψ2 ψ1 − ψ2ð Þg U , Zð Þβ2 V ,Wð Þ
− ψ2 ψ1 − ψ2ð Þg V , Zð Þβ2 U ,Wð Þ:

ð13Þ

Let M be an m-dimensional submanifold in a Riemann-
ian manifold N . Let ∇ and ~∇ be the induced quarter
symmetric-metric connection and Levi-Civita connection,
respectively, on M. Then, the Gauss formulas are

�∇UV = ∇UV + ζ U , Vð Þ, U , V ∈ Γ TMð Þ,
�∇UV = ∇~

UV + ~ζ U , Vð Þ, U , V ∈ Γ TMð Þ,
ð14Þ

where ~ζ is the second fundamental form that satisfies the
relation

ζ U ,Vð Þ = ~ζ U , Vð Þ − ψ2g U ,Vð ÞΓ⊥, ð15Þ

where Γ⊥ is the normal component of the vector field Γ on
M.

Moreover, the equation of Gauss is defined by [19]

�R U , V , Z,Wð Þ = R U , V , Z,Wð Þ − g ζ U ,Wð Þ, ζ V , Zð Þð Þ
+ g ζ V ,Wð Þ, ζ U , Zð Þð Þ
+ ψ1 − ψ2ð Þg ζ V , Zð Þ, Γ⊥� �

g U ,Wð Þ
+ ψ2 − ψ1ð Þg ζ U , Zð Þ, Γ⊥� �

g V ,Wð Þ:
ð16Þ

3. Characterization of Lagrangian
Submanifold in Generalized Complex
Space Form

A smooth manifold N endowed with an almost complex
structure J and a Riemannian metric g that is compatible
with J is called an almost Hermitian manifold. Further, for
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the Levi-Civita connection ∇ if ∇J = 0, then an almost Her-
mitian manifold is said to be a Kaehler manifold. A Kaehler
manifold of constant holomorphic curvature is called a com-
plex space form. The curvature tensor of a complex space
form is given by

e�R U , V , Z,Wð Þ = c
4 g V , Zð Þg U ,Wð Þ − g U , Zð Þg V ,Wð Þf
+ g U , JZð Þg JV ,Wð Þ − g V , JZð Þg JU ,Wð Þ
+ 2g U , JVð Þg JZ,Wð Þg:

ð17Þ

However, an almost Hermitian manifold N is called a
generalized complex space form [20–22], denoted by Nð f 1
, f 2Þ, if for all vector fields U , V , and Z on N , the Riemann-

ian curvature tensor e�R satisfies

e�R U , V , Z,Wð Þ = f 1 g V , Zð Þg U ,Wð Þ − g U , Zð Þg V ,Wð Þf g
+ f 2 g U , JZð Þg JV ,Wð Þ − g V , JZð Þg JU ,Wð Þf
+ 2g U , JVð Þg JZ,Wð Þg,

ð18Þ

where f 1 and f 2 are smooth functions on N .
In fact, we have following fundamental result from Tri-

cerri and Vanhecke [20].

Theorem 3 (see [20]). Let N be a connected almost Hermi-
tian manifold with real dimension 2m > 6 and Riemannian

curvature e�R is of the form (18) such that f 2 is not identically
zero. Then, N is a complex space form.

Remark 4. From (18), we notice that if f 1 = f 2 = c/4, then we
recover the complex space form.

From (13) and (18), we have

�R U , V , Z,Wð Þ = f 1 g V , Zð Þg U ,Wð Þ − g U , Zð Þg V ,Wð Þf g
+ f 2 g U , JZð Þg JV ,Wð Þ − g V , JZð Þg JU ,Wð Þf
+ 2g U , JVð Þg JZ,Wð Þg + ψ1β1 U , Zð Þg V ,Wð Þ
− ψ1β1 V , Zð Þg U ,Wð Þ + ψ2β1 V ,Wð Þg U , Zð Þ
− ψ2β1 U ,Wð Þg V , Zð Þ + ψ2 ψ1 − ψ2ð Þg U , Zð Þβ2 V ,Wð Þ
− ψ2 ψ1 − ψ2ð Þg V , Zð Þβ2 U ,Wð Þ:

ð19Þ

Lemma 5 (see [13]). Let f 1ðu1, u2,⋯, umÞ be a function on
ℝm defined by

f 1 u1, u2,⋯, umð Þ = u1 〠
m

j=2
uj − 〠

m

j=2
u2j : ð20Þ

If u1 + u2+⋯+um = 2ma, then

f 1 u1, u2,⋯, umð Þ ≤ m − 1
4m

u1 + u2+⋯+umð Þ2, ð21Þ

and the equality holds if and only if ð1/ðm + 1ÞÞu1 = u2 =⋯
= um = a, where a is a constant.

Lemma 6 (see [13]). Let f 2ðu1, u2,⋯, umÞ be a function on
ℝm defined by

f 2 u1, u2,⋯, umð Þ = u1 〠
m

j=2
uj − u21: ð22Þ

If u1 + u2+⋯+um = 4a, then

f 2 u1, u2,⋯, umð Þ ≤ 1
8

u1 + u2+⋯+umð Þ2, ð23Þ

and the equality holds if and only if u1 = a and u2+⋯+
um = 3a, where a is a constant.

Let Mm be an m-dimensional submanifold of an almost
Hermitian manifold N . Then, Mm is said to be totally real if

J TpM
m� �

⊂ T⊥
pM

m: ð24Þ

Then, we have the following relations [23]:

~AJUV = ~AJVU , U , V ∈ TpM, ð25Þ

or equivalently,

~ζ
k
ij = ~A

j
ik = ~ζjk

i, ∀i, j, k = 1,⋯m, ð26Þ

where ~A
k
is the shape operator with respect to �∇ and

~ζij
k = g ~ζ ei, ej

� �
, Jek

� �
, i, j, k = 1,⋯,m: ð27Þ

Remark 7. A totally real submanifold which is of maximal
dimension is known as the Lagrangian submanifold [24].

Definition 8 (see [25]). A nontotally geodesic Lagrangian
submanifold Mm of a complex space form N2mð4cÞ is called
H-umbilical if its second fundamental form satisfies

h e1, eið Þ = μJen, h ei, emð Þ = μJei, i = 1⋯m − 1,
h em, emð Þ = λJem, h ei, ej

� �
= 0, 1 ≤ i ≠ j ≤m − 1,

ð28Þ

for some functions μ and λ with respect to an orthonormal
frame fe1,⋯, emg, where J is the complex structure of N2m

ð4cÞ.

Theorem 9. LetMm be a totally real submanifold of maximal
dimension mðm ≥ 2Þ in a connected complex space form Nð
f 1, f 2Þ of dimension 2m with a quarter-symmetric metric
connection such that the vector field Γ is tangent to Mm.
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Then, for any unit tangent vector U to Mm

m m − 1ð Þ
4

Hk k2 ≥ Ric Uð Þ − f 1 m − 1ð Þ − ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ
+ ψ2traceβ1 − ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ �
− m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,

ð29Þ

and the equality holds in (29) identically if and only if
either

(1) Mm is totally geodesic, provided that m > 2, or

(2) m = 2 and M2 is a H -umbilical Lagrangian surface
with λ = 3μ

Proof. As Γ is tangent to Mm, we have

ζ = ~ζ, H = ~H : ð30Þ

Let us assume an orthonormal basis fe1 =U , e2,⋯, emg
⊂ TpM

m and fem+1 = Je1,⋯, e2m = Jemg ⊂ T⊥
pM

m at point p
∈Mm with unit vector U ∈ TpM

m. Then, by combining
(16) and (19) and substituting U =W = ej and V = Z = e1,
for j = 2,⋯,m, we get

R ej, e1, e1, ej
� �

= f 1 g e1, e1ð Þg ej, ej
� �

− g ej, e1
� �

g e1, ej
� �� �

+ f 2 g ej, Je1
� �

g Je1, ej
� �

− g e1, Je1ð Þg Jej, ej
� ��

+ 2g ej, Je1
� �

g Je1, ej
� ��

+ ψ1β1 ej, e1
� �

g e1, ej
� �

− ψ1β1 e1, e1ð Þg ej, ej
� �

+ ψ2β1 e1, ej
� �

g ej, e1
� �

− ψ2β1 ej, ej
� �

g e1, e1ð Þ + ψ2 ψ1 − ψ2ð Þg ej, e1
� �

β2 e1, ej
� �

− ψ2 ψ1 − ψ2ð Þg e1, e1ð Þβ2 ej, ej
� �

+ g ζ ej, ej
� �

, ζ e1, e1ð Þ� �
− g ζ e1, ej

� �
, ζ ej, e1
� �� �

− ψ1 − ψ2ð Þg ζ e1, e1ð Þ, Γ⊥� �
g ej, ej
� �

− ψ2 − ψ1ð Þg ζ ej, e1
� �

, Γ⊥� �
g e1, ej
� �

:

ð31Þ

Taking the summation over j = 2,⋯,m, we find

Ric Uð Þ = f 1 m − 1ð Þ + ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1
+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ �

− m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ + 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − ζs1j

� �2
� 	

,

ð32Þ

which implies

Ric Uð Þ − f 1 m − 1ð Þ − ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ + ψ2traceβ1
− ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

= 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − ζs1j

� �2
� 	

≤ 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − 〠

m

j=2
ζ11j

� �2
− 〠

m

j=2
ζj1j

� �2
:

ð33Þ

From the above equation and (26), it is easy to see that

Ric Uð Þ − f 1 m − 1ð Þ − ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ + ψ2traceβ1
− ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

≤ 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − 〠

m

j=2
ζ j11

� �2
− 〠

m

j=2
ζ1jj

� �2
:

ð34Þ

Putting

f 1 ζ111, ζ122,⋯, ζ1mm

� �
= ζ111 〠

m

j=2
ζ1jj − 〠

m

j=2
ζ1jj

� �2
,

f s ζs11, ζs22,⋯, ζsmm

� �
= ζs11 〠

m

j=2
ζsjj − ζs11

� �2, ∀s = 2,⋯,m,

ð35Þ

and combining Lemma 5 with the relation mH1 = ζ111 + ζ122
+⋯+ζ1mm, we obtain

f 1 ζ111, ζ122,⋯, ζ1mm

� �
≤
m − 1
4m mH 1� �2 = m m − 1ð Þ

4 H 1� �2
:

ð36Þ

Then, by Lemma 6 for s = 2,⋯,m, we get

f s ζs11, ζs22,⋯, ζsmm

� �
≤
1
8 mH sð Þ2 = m2

8 H sð Þ2 ≤ m m − 1ð Þ
4 H sð Þ2:

ð37Þ

We find from (34), (36), and (37) that

Ric Uð Þ ≤ f 1 m − 1ð Þ + ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1
+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ �
− m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,+m m − 1ð Þ

4 ∥H∥2,

ð38Þ

which is the desired inequality (29).☐

Now, we discuss the equality cases.

Case 1. For m > 2, if Je1kH , then

H s = 0, ð39Þ

for all s > 1. Therefore, using Lemma 6, we derive

ζ11j = ζj11 =
mH j

4 = 0, for all j > 1,

ζ1jk = 0, for all j, k > 1, j ≠ k:

ð40Þ

4 Advances in Mathematical Physics



Further, Lemma 5 yields

ζ111 = m + 1ð ÞH
1

2 , ζ1jj =
H1

2 , for all j > 1: ð41Þ

In (33), we see that RicðUÞ = Ricðe1Þ. In the same way,
by deriving Ricðe2Þ and making use of the equality, we con-
clude that

ζs2j = ζ2js = 0, for all s ≠ 2, j ≠ 2, s ≠ j: ð42Þ

In consequence, we find

ζ211
n + 1 = ζ222 =⋯ = ζ2mm = H 2

2 = 0: ð43Þ

We see that the equality holds for every unit tangent vec-
tors. The above conclusion is also valid for ðζsjkÞ. Thus,

ζ22j = ζj22 =
H j

2 = 0, ∀j ≥ 3: ð44Þ

Then, the only possible nonzero entries for ðζ2jkÞ (resp.,
for ðζsjkÞ) are

ζ212 = ζ221 = ζ122 =
H1

2 respectively ζs1s = ζss1 = ζ1ss =
H1

2 ,∀s ≥ 3
� 	

:

ð45Þ

Substituting U = Z = e2 and V =W = ej, j = 2,⋯,m in
(16), we derive

~R e2, ej, e2, ej
� �

= R e2, ej, e2, ej
� �

−
H 1

2

� 	2
, ∀j ≥ 3: ð46Þ

On the other hand, if we substitute U = Z = e2 and V =
W = e1 in (16), we get

~R e2, e1, e2, e1ð Þ = R e2, e1, e2, e1ð Þ − m + 1ð Þ H 1

2

� 	2
+ H 1

2

� 	2
:

ð47Þ

Using (46) and (47), we find

Ric e2ð Þ − f 1 n − 1ð Þ − ψ1 + ψ2 − nψ1½ �β1 e2, e2ð Þ + ψ1traceβ1
− ψ2 ψ1 − ψ2ð Þ mβ2 e2, e2ð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

= 2 m − 1ð Þ H 1

2

� 	2
:

ð48Þ

Moreover, the equality case of (29) implies that

Ric e2ð Þ − f 1 m − 1ð Þ − ψ1 + ψ2 −mψ1½ �β1 U ,Uð Þ + ψ1traceβ1
− ψ2 ψ1 − ψ2ð Þ mβ2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

=m m − 1ð Þ H 1

2

� 	2
:

ð49Þ

Using the fact m ≠ 1, 2, by (48) and (49), it is easy to see
that H 1 = 0. This implies that Mm is a totally geodesic in
N2mð4cÞ.

Case 2. In case m = 2, M2 is nontotally geodesic, then ζðe1,
e1Þ = λe3, ζðe2, e2Þ = μe3, ζðe1, e2Þ = μe4, together with λ = 3
μ. This proves that M2 is H-umbilical surface.

The above theorem gives the following results.

Corollary 10. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a connected complex space form
Nð f 1, f 2Þ of dimension 2m with a semisymmetric metric con-
nection such that the vector field Γ is tangent to Mm. Then,
for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

Hk k2 + f 1 m − 1ð Þ + 2 −mð Þβ1 U ,Uð Þ − traceβ1,

ð50Þ

and the equality holds in (50) identically if and only if either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Lagrangian surface
with λ = 3μ

Proof. Using the fact ψ1 = ψ2 = 1 together with Theorem 9,
the result directly follows.☐

Remark 11. It is worthy to mention here that Corollary 10
together with Remark 4 is the main result for complex case
of the paper [26].

Corollary 12. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a connected complex space form
Nð f 1, f 2Þ of dimension 2m with a semisymmetric nonmetric
connection such that the vector field Γ is tangent to Mm.
Then, for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

∥H∥2 + f 1 m − 1ð Þ + 1 −mð Þβ1 U ,Uð Þ + m − 1ð Þπ ζð Þ,

ð51Þ

and the equality holds in (51) identically if and only if either

(1) Mm is totally geodesic, provided n > 2, or

(2) M2 is a H -umbilical Lagrangian surface with λ = 3μ

5Advances in Mathematical Physics



Proof. Using the fact ψ1 = 1 and ψ2 = 0 together with Theo-
rem 9, the result directly follows.☐

4. Characterization of Legendrian
Submanifold in Generalized Sasakian
Space Form

Let a ð2m + 1Þ-dimensional almost contact metric manifold
N2m+1 furnished with the almost complex structure ðφ, ξ, η
, gÞ, where φ is a (1,1) tensor field, ξ is the structure vector
field, η, the 1-form, and g is the Riemannian metric on
N2m+1. Then, following relations hold good:

φ2 = −I + η ⊗ ξ, η ξð Þ = 1, g φU , φVð Þ = g U , Vð Þ − η Uð Þη Vð Þ:
ð52Þ

It also follows from the above relations that

φξ = 0, η φUð Þ = 0, η Uð Þ = g U , ξð Þ, g φU , Vð Þ + g U , φVð Þ = 0,
ð53Þ

for all vector fields U , V on N .
Let ðN , φ, ξ, η, gÞ be an almost contact metric manifold

whose curvature tensor satisfies [27]

e�R U , Vð ÞZ = f 1 g V , Zð ÞU − g U , Zð ÞVf g + f 2 g U , φZð ÞφVf
− g V , φZð ÞφU + 2g U , φVð ÞφZg + f 3 η Uð Þη Zð ÞVf
− η Vð Þη Zð ÞU + g U , Zð Þη Vð Þξ − g V , Zð Þη Uð Þξg,

ð54Þ

for all vector fields U , V , Z on N , where f 1, f 2, f 3 are dif-
ferentiable functions on N . Then, Nð f 1, f 2, f 3Þ is said to be a
generalized Sasakian space form.

Remark 13. The generalized Sasakian space forms are [27]

(1) Sasakian space forms if f 1 = ðc + 3Þ/4, f 2 = f 3 = ðc −
1Þ/4

(2) Kenmotsu space forms if f 1 = ðc − 3Þ/4 and f 2 = f 3
= ðc + 1Þ/4

(3) cosymplectic space forms if f 1 = f 2 = f 3 = c/4

From (13) and (54), we have

�R U , Vð ÞZ = f 1 g V , Zð ÞU − g U , Zð ÞVf g + f 2 g U , φZð ÞφVf
− g V , φZð ÞφU + 2g U , φVð ÞφZg + f 3 η Uð Þη Zð ÞVf
− η Vð Þη Zð ÞU + g U , Zð Þη Vð Þξ − g V , Zð Þη Uð Þξg
+ ψ1β1 U , Zð Þg V ,Wð Þ − ψ1β1 V , Zð Þg U ,Wð Þ
+ ψ2β1 V ,Wð Þg U , Zð Þ − ψ2β1 U ,Wð Þg V , Zð Þ
+ ψ2 ψ1 − ψ2ð Þg U , Zð Þβ2 V ,Wð Þ − ψ2 ψ1 − ψ2ð Þg V , Zð Þβ2 U ,Wð Þ:

ð55Þ

A submanifold Mm of an almost contact manifold N2n+1

normal to ξ is called a C-totally real submanifold. On such a
submanifold, φ maps any tangent vector to Mm at p ∈Mm

into the normal space T⊥
pM

m . In particular, if n =m, i.e.,
Mm has maximum dimension, then it is a Legendrian sub-
manifold. For a Legendrian submanifold Mm, if fe1,⋯, em
g and fem+1 = φe1,⋯, e2m = φem, e2m+1 = ξg be tangent
orthonormal frame and normal orthonormal frame, respec-
tively, on Mm. One has

~AJUV = ~AJVU , U , V ∈ TpM, ð56Þ

or equivalently,

~ζ
k
ij = ~A

j
ik = ~ζ

i
jk, ∀i, j, k = 1,⋯,m, ð57Þ

where ~A
k
is the shape operator with respect to �∇ and

~ζij
k = g ~ζ ei, ej

� �
, Jek

� �
, i, j, k = 1,⋯,m: ð58Þ

Definition 14 (see [28]). A nontotally geodesic Legendrian
submanifold Mm of a Sasakian space form N2m+1ð4cÞ is
called H-umbilical if its second fundamental form satisfies

h e1, e1ð Þ = λϕe1, h e2, e2ð Þ =⋯ = h em, emð Þ = μϕe1,
h e1, ej
� �

= μϕej, h ej, ek
� �

= 0, j ≠ k, j, k = 2⋯ ,m,
ð59Þ

for some functions μ and λ with respect to an orthonormal
frame fe1,⋯, emg, where ϕ is the contact structure of
N2m+1ð4cÞ.

Theorem 15. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a generalized Sasakian space
form Nð f 1, f 2, f 3Þ of dimension 2m + 1 with a quarter-
symmetric metric connection such that the vector field Γ is
tangent to Mm. Then, for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

Hk k2 + f 1 m − 1ð Þ + ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ
− ψ2traceβ1 + ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ �
+ m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

ð60Þ

and the equality holds in (60) identically if and only if either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof. As Γ is tangent to Mm, we have

ζ = ~ζ,H = ~H : ð61Þ

Let us assume an orthonormal basis fe1 =U , e2,⋯, emg
⊂ TpM

m and fem+1 = φe1,⋯, e2m = φem, e2m+1 = ξg ⊂ T⊥
p M

m

at point p ∈Mm with unit vector U ∈ TpM
m. Then, by
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combining (16) and (55) and substituting U =W = ej and
V = Z = e1 and summing over j = 2,⋯,m, we compute

Ric Uð Þ = f 1 m − 1ð Þ + ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1
+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ �

− m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ + 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − ζsij

� �2
� 	

:

ð62Þ

From (62) and (57), we deduce

Ric Uð Þ − f 1 m − 1ð Þ − ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ + ψ2traceβ1
− ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

≤ 〠
m

s=1
〠
m

j=2
ζs11ζ

s
jj − 〠

m

j=2
ζj11

� �2
− 〠

m

j=2
ζ1jj

� �2
:

ð63Þ

Putting

f 1 ζ111, ζ122,⋯, ζ1mm

� �
= ζ111 〠

m

j=2
ζ1jj − 〠

m

j=2
ζ1jj

� �2
,

f s ζs11, ζs22,⋯, ζsmm

� �
= ζs11 〠

m

j=2
ζsjj − ζs11

� �2, ∀s = 2,⋯,m,

ð64Þ

and by using the fact mH 1 = ζ111 + ζ122+⋯+ζ1mm together
with the Lemma 5, we see that

f 1 ζ111, ζ122,⋯, ζ1mm

� �
≤
m − 1
4m mH 1� �2 = m m − 1ð Þ

4 H 1� �2
:

ð65Þ

Application of Lemma 6 for s = 2,⋯,m, gives

f s ζs11, ζs22,⋯, ζsmm

� �
≤
1
8 mH sð Þ2 = m2

8 H sð Þ2 ≤ m m − 1ð Þ
4 H sð Þ2:

ð66Þ

Equations (65), (67), and (68) yield the following rela-
tion

Ric Uð Þ − f 1 m − 1ð Þ − ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ + ψ2traceβ1
− ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

≤
m m − 1ð Þ

4 〠
m

s=1
H sð Þ2 = m m − 1ð Þ

4 ∥H∥2:

ð67Þ

Thus, we derive

Ric Uð Þ ≤ f 1 m − 1ð Þ + ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1
+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ − traceβ2½ �
+ m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,+m m − 1ð Þ

4 ∥H∥2,

ð68Þ

which is the desired inequality (60).☐

Now, we discuss the equality cases.

Case 1. For m > 2, if Je1kH . Then,

H s = 0, ð69Þ

for all s > 1. Therefore, using Lemma 6, we derive

ζ11j = ζj11 =
mH j

4 = 0, for all j > 1, ð70Þ

ζ1jk = 0, for all j, k > 1, j ≠ k: ð71Þ

Further, Lemma 5 yields

ζ111 = m + 1ð ÞH
1

2 , ζ1jj =
H1

2 , for all j > 1: ð72Þ

In (63), we see that RicðUÞ = Ricðe1Þ. In the same way,
by deriving Ricðe2Þ and making use of the equality, we con-
clude that

ζs2j = ζ2js = 0, for all s ≠ 2, j ≠ 2, s ≠ j: ð73Þ

In consequence, we find

ζ211
m + 1 = ζ222 =⋯ = ζ2mm = H 2

2 = 0: ð74Þ

We see that the equality holds for every unit tangent vec-
tors. The above conclusion is also valid for ðζsjkÞ. Thus,

ζ22j = ζj22 =
H j

2 = 0, ∀j ≥ 3: ð75Þ

Then, the only possible nonzero entries for ðζ2jkÞ (resp.,
for ðζsjkÞ) are

ζ212 = ζ221 = ζ122 =
H 1

2 resp:ζs1s = ζss1 = ζ1ss =
H 1

2 ,∀s ≥ 3
� 	

:

ð76Þ

Substituting U = Z = e2 and V =W = ej, j = 2,⋯,m in
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(16), we obtain

~R e2, ej, e2, ej
� �

= R e2, ej, e2, ej
� �

−
H 1

2

� 	2
, ∀j ≥ 3: ð77Þ

On the other hand, if we put U = Z = e2 and V =W = e1
in (16), we get

~R e2, e1, e2, e1ð Þ = R e2, e1, e2, e1ð Þ − m + 1ð Þ H 1

2

� 	2
+ H 1

2

� 	2
:

ð78Þ

From (77) and (78), it follows that

Ric e2ð Þ − f 1 m − 1ð Þ − ψ1 + ψ2 −mψ1½ �β1 e2, e2ð Þ + ψ1traceβ1
− ψ2 ψ1 − ψ2ð Þ mβ2 e2, e2ð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

= 2 m − 1ð Þ H 1

2

� 	2
:

ð79Þ

Moreover, using the equality case of (29), we see that

Ric e2ð Þ − f 1 m − 1ð Þ − ψ1 + ψ2 −mψ1½ �β1 U ,Uð Þ + ψ1traceβ1
− ψ2 ψ1 − ψ2ð Þ mβ2 U ,Uð Þ − traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ

=m m − 1ð Þ H 1

2

� 	2
:

ð80Þ

Indeed m ≠ 1, 2, with (81) and (84), we findH 1 = 0. This
implies that Mm is a totally geodesic in N2m+1ðcÞ.

Case 2. In the case m = 2, M2 is nontotally geodesic, then ζ
ðe1, e1Þ = λe3, ζðe2, e2Þ = μe3, ζðe1, e2Þ = μe4 together with λ
= 3μ. This proves that M2 is H -umbilical surface.

Remark 16. If we consider the structure vector field ξ tangen-
tial to the submanifoldM, then we have the following result.

Theorem 17. Let Mm+1 be a totally real submanifold of max-
imal dimension m + 1ðm ≥ 2Þ in a generalized Sasakian space
form Nð f 1, f 2, f 3Þ of dimension 2m + 1 with a quarter-
symmetric metric connection such that the vector field Γ is
tangent to Mm+1. Then, for any unit tangent vector U to
Mm+1,

Ric Uð Þ ≤ m m + 1ð Þ
4

Hk k2 + f 1m − m − 1ð Þη2 e1ð Þ + 1
� �

f 3

+ ψ2 + ψ1m½ �β1 U ,Uð Þ
− ψ2traceβ1 + ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ �
+m ψ1 − ψ2ð Þπ ζð Þ,

ð81Þ

and the equality holds in (81) identically if and only if
either

(1) Mm+1 is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof.We obtain the proof on the same lines of the proof for
Theorem 15 additionally assuming an orthonormal basis

e1 =U , e2,⋯, em, em+1, em+2,⋯, e2m+1f g, ð82Þ

such that e1, e2,⋯, em, em+1 ∈ TpM.
As a consequence of Theorem 15, we obtain the follow-

ing results.☐

Corollary 18. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a Sasakian space form NðcÞ of
dimension 2m + 1 with a quarter-symmetric metric connec-
tion such that the vector field Γ is tangent to Mm. Then, for
any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

Hk k2 + c + 3
4

m − 1ð Þ
+ ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1

+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,
ð83Þ

and the equality holds in (83) identically if and only if either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof. The proof follows immediately from Theorem 15 by
putting f 1 = ðc + 3Þ/4, f 2 = f 3 = ðc − 1Þ/4.☐

Corollary 19. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a Kenmotsu space form NðcÞ of
dimension 2m + 1 with a quarter-symmetric metric connec-
tion such that the vector field Γ is tangent to Mm. Then, for
any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

Hk k2 + c − 3
4

m − 1ð Þ
+ ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1

+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ �
+ m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,

ð84Þ

and the equality holds in (84) identically if and only if
either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ
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Proof. The proof follows immediately from Theorem 15 by
replacing f 1 = ðc − 3Þ/4 and f 2 = f 3 = ðc + 1Þ/4.☐

Corollary 20. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a cosymplectic space form NðcÞ
of dimension 2m + 1 with a quarter-symmetric metric con-
nection such that the vector field Γ is tangent to Mm. Then,
for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

Hk k2 + c − 3
4

m − 1ð Þ
+ ψ2 + ψ1 1 −mð Þ½ �β1 U ,Uð Þ − ψ2traceβ1

+ ψ2 ψ1 − ψ2ð Þ β2 U ,Uð Þ + traceβ2½ � + m − 1ð Þ ψ1 − ψ2ð Þπ ζð Þ,
ð85Þ

and the equality holds in (85) identically if and only if
either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof. The proof follows immediately from Theorem 15 by
substituting f 1 = f 2 = f 3 = c/4.☐

Corollary 21. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a generalized Sasakian space
form Nð f 1, f 2, f 3Þ of dimension 2m + 1 with a semisymmetric
metric connection such that the vector field Γ is tangent to
Mm. Then, for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

∥H∥2 + f 1 m − 1ð Þ + 2 −mð Þβ1 U ,Uð Þ − traceβ1,

ð86Þ

and the equality in (60) holds identically if and only if either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof. Using the fact that ψ1 = ψ2 = 1 together with Theorem
15, the result directly follows.☐

Remark 22. It is worthy to mention here that Corollary 21
together with Remark 13 (1) is the main result of the
paper [6].

Corollary 23. Let Mm be a totally real submanifold of maxi-
mal dimension mðm ≥ 2Þ in a generalized Sasakian space
form Nð f 1, f 2, f 3Þ of dimension 2m + 1 with a semisymmetric
nonmetric connection such that the vector field Γ is tangent to

Mm. Then, for any unit tangent vector U to Mm

Ric Uð Þ ≤ m m − 1ð Þ
4

∥H∥2 + f 1 m − 1ð Þ + 1 −mð Þβ1 U ,Uð Þ + m − 1ð Þπ ζð Þ,

ð87Þ

and the equality in (87) holds identically if and only if either

(1) Mm is totally geodesic, provided m > 2, or

(2) m = 2 and M2 is a H -umbilical Legendrian surface
with λ = 3μ

Proof. Using the fact that ψ1 = 1 and ψ2 = 0 together with
Theorem 15, the result directly follows.☐

Remark 24. All the above cases for Theorem 15 can be seen
in the case of Theorem 17 as well.

Remark 25. Examples of totally geodesic submanifolds, H
-umbilical Lagrangian submanifolds, and H-umbilical
Legendrian submanifolds, i.e., examples of submanifolds
attaining the equality case of the inequalities stated in this
article, can be found in [25, 29, 30].
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