Hindawi

Advances in Mathematical Physics
Volume 2021, Article ID 9044313, 12 pages
https://doi.org/10.1155/2021/9044313

Hindawi

Research Article

Existence Results for y-Hilfer Fractional Integro-Differential
Hybrid Boundary Value Problems for Differential Equations and
Inclusions

Chanakarn Kiataramkul,' Sotiris K. Ntouyas ,>> and Jessada Tariboon !

'Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science,
King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Department of Mathematics, University of loannina, 451 10 loannina, Greece

*Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Jessada Tariboon; jessada.t@sci.kmutnb.ac.th
Received 27 June 2021; Accepted 25 August 2021; Published 13 September 2021
Academic Editor: Maria L. Gandarias

Copyright © 2021 Chanakarn Kiataramkul et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this research work, we study a new class of y-Hilfer hybrid fractional integro-differential boundary value problems with
nonlocal boundary conditions. Existence results are established for single and multivalued cases, by using suitable fixed-point

theorems for the product of two single or multivalued operators. Examples illustrating the main results are also constructed.

1. Introduction

Some real-world problems in physics, mechanics, and other
fields can be described better with the help of fractional dif-
ferential equations. So, differential equations of fractional
order has recently received a lot of attention and now consti-
tutes a significant branch of nonlinear analysis. Numerous
monographs have appeared devoted to fractional differential
equations, for example, see [1-8]. Recently, differential equa-
tions and inclusions equipped with various boundary condi-
tions have been widely investigated by many researchers, see
[9-14] and the references cited therein.

Hybrid fractional differential equations have also been
studied by several researchers. This class of equations
involves the fractional derivative of an unknown function
hybrid with the nonlinearity depending on it. Some recent
results on hybrid differential equations can be found in a
series of papers [15-18].

We will give a brief history on the subject of hybrid dif-
ferential and fractional differential equations. In 2010,

Dhage and Lakshmikantham [19] initiated the study of the
first-order hybrid differential equation

d x(t) B _
it (et~ =0T
x(0)=x, € R,

where feC(JxR,R\{0}) and geC(JxR,R). They
established the existence, uniqueness results, and some fun-
damental differential inequalities.

In 2011, Zhao et al. [15] discussed the following hybrid
fractional initial value problem
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where D1 is the Riemann-Liouville fractional derivative of
order 0<g<1,f € C(JxR,R\{0}),and ge C(J xR, R).

Sun et al. [16] studied the following hybrid fractional
boundary value problem

te[0,1],

X0 \_ .
Dq(f(t,xm)) 9(6x(1)) 3)
x(O)zx(l)zO,

where D7 is the Riemann-Liouville fractional derivative of
order 1<g<2,feC([0,1]xR,R\{0}), and g€ C([0, 1] x
R, R).

In [20], the authors studied the existence of solutions for
a nonlocal boundary value problem of hybrid fractional
integro-differential equations given by

[ty - s 1P,
P gt (t

x(0) =m(x), x(1) = A,

t,x(t))

=f(tx(t), te[0.1],

i(
)

(4)

where D is the Caputo fractional derivative of order « with
1 <a<?2, IP is the Riemann-Liouville fractional integral of
order f,>0, h; € C([0,1] xR, R) for i=1,2,--,n, g€ C([0
, 1] xR, R\ {0}), f € C(]0,1] xR, R), a functional m : C([0
,1,R) — R, and A € R. The main result was obtained by
means of a hybrid fixed-point theorem for three operators
in a Banach algebra due to Dhage [21].

The existence of solutions for an initial value problem of
hybrid fractional integro-differential equations, given by

[Dx(t) - S 1 (1, x(8))
P a(t.5(0)

x(0) =0,D“x(0) =0,

=f(tx(t), te[0.1],

(5)

was studied in [22]. Here, D? is the Caputo fractional deriv-
ative of order O¢€{a,w} with 0<a,w<; 1B is the
Riemann-Liouville fractional integral of order f8,>0, h; € C
([0,1]xR,R) for i=1,2,---,n, g€ C([0, 1] x R, R\ {0}), f
€ C([0,1] xR, R). A generalization of Krasnoselskii fixed-
point theorem due to Dhage [21] was used in the proof of
the existence result.

The problem (5) was extended in [23] to boundary value
problems of the form

o | DOx(t) = XL TPhy (8 x(t))
g(tx(t))

x(0)=0,D"x(0) =0, x(1)

=f(t,x(t)), €10,1],

=6x(n), 0<8<1,0<n<1,

(6)

where DY is the Caputo fractional derivative of order 6 € {a,
w} with 0 < @< 1,1 < w < 2; I# is the Riemann-Liouville frac-
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tional integral of order f3;>0, h; € C([0,1] x R, R) for i =1,
2,--,n, geC([0,1] xR, R\ {0}), feC([0,1] xR, R). An
existence result is proved via Dhage’s [21] fixed-point
theorem.

For recent results on hybrid boundary value problems of
fractional differential equations and inclusions, we refer to
[24-26] and references cited therein. In the literature, there
do exist several definitions of fractional integrals and deriv-
atives. One of them is the Hilfer fractional derivative, which
composites both Riemann-Liouville and Caputo fractional
derivatives [27]. Fractional differential equations involving
Hilfer derivative have many applications, and we refer to
[28] and the references cited therein. There are actual world
occurrences with uncharacteristic dynamics such as atmo-
spheric diffusion of pollution, signal transmissions through
strong magnetic fields, the effect of the theory of the profit-
ability of stocks in economic markets, the theoretical simula-
tion of dielectric relaxation in glass forming materials, and
network traffic. See [29, 30] and references cited therein.

In [31], an initial value problem was discussed for hybrid
fractional differential equations involving w-Hilfer fractional
derivative of the form

Hea,fB; x(t) _
D WGW> =g(t,x(t), teJ,

(t
v (j%) =x, €R

where "D*FV is the y-Hilfer fractional derivative with 0
<a<l0<p<la<sy=a+pB-af <],
feCiyyJxR,R\{0}), and geCp_,,(JxR,R). For
some recent results on y-Hilfer fract10naiy initial value prob-
lems, see [32-37] and references cited therein.

In the present work, we study a y-Hilfer hybrid frac-
tional integro-differential nonlocal boundary value problem
of the form

(7)

where "D is the y-Hilfer fractional derivative operator of

order a, with 0 < <2, 0<p<1; Jfﬂ/ is y-Riemann-Liou-
ville fractional integral of order 8; >0, for i=1,2,---,n, g€
C([a, )] x R,R\ {0}), feC([a,b]xR,R), m:C([a,b],R)
—> Rh; € C([a, b] x R, R) with h;(a,0)=0 for i=1,2,--,
n. An existence result is established via a fixed-point theorem
for the product of two operators due to Dhage [21].

As a second problem, we investigate the existence of
solutions for the following inclusion w-Hilfer fractional
hybrid integro-differential equations with nonlocal bound-
ary conditions of the form
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gyl [ ( x(1)

g(t’x(t))> - Z;in"”hi(t,x(t))} €F(t,x(t)), telab),

©)

where F : [a,b] x R — P(R) is a multivalued map, P(R)
is the family of all subsets of R, and the other quantities
are the same as in boundary value problem (8). Here, the
existence result is based on a multivalued fixed-point theo-
rem for the product of two operators due to Dhage [38].

The rest of the paper is arranged as follows: in Section 2,
we recall some notations, definitions, and lemmas from frac-
tional calculus needed in our study. Also, we prove an auxil-
iary lemma helping us to transform the hybrid boundary
value problem (8) into an equivalent integral equation. The
main existence result for the y-Hilfer hybrid boundary value
problem (8) is contained in Section 3. The obtained result is
illustrated by a numerical example. Section 4 is devoted in
the study of the inclusion case of the hybrid boundary value
problem (8) by considering the multivalued hybrid bound-
ary value problem (9). Some special cases are discussed in
Section 5.

2. Preliminaries

This section is assigned to recall some notation in relation to
fractional calculus. We denote by /" ([a, b], R) the n-times
absolutely continuous functions given by

4%" ([a, b], R) = {f  [a,b] — R; £ € 7% ([a, b],]R)}.
(10)

Definition 1 (see [2]). Let (a, b), (—0co<a < b<00), be a finite
or infinite interval of the half-axis (0, 0c0) and « > 0. Also, let
y be an increasing and positive monotone function on (a, b,
having a continuous derivative ¥’ (x) on (a, b). The y-Rie-
mann-Liouville fractional integral of a function f with
respect to another function y on [a, b] is defined by

t>a>0,

(11)

TV = % j W' (5) (W() - w(s) " (s)ds

a

where I'(-) is the Euler Gamma function.

Definition 2 (see [2]). Let w'(t)#0 and a>0, ne N. The
Riemann-Liouville derivatives of a function f with respect
to another function y of order « is defined by

DS (1) = (w : )jt> TS ()

1 14\, (12)
“ s (w—t@) [R&SL%0

(
—y(s)" f(s)ds

where n = [a] + 1, [a] is represent the integer part of the real
number «.

Definition 3 (see [32]). Let n— 1 <a<n with neN, [a, b] is
the interval such that —co<a<b<oo and f,y € C"([a, b],
R) two functions such that v is increasing and ' (t) #0,
for all ¢ € [a, b]. The y-Hilfer fractional derivative of a func-
tion f of order « and type 0 < p <1 is defined by

. ol 1 AN i
Hg“;P,W ¢ =jl)£” ayy - j(i p)(n—a)y ¢
S0 =7 () A

=T D (),

(13)

where n = [a] + 1; [a] represents the integer part of the real
number a with y=a + p(n—a).

Lemma 4 (see [2]). Let o, 5> 0, then we have the following
semigroup property given by

TN IRV (1) = TWPVf (1),

Next, we present the y-fractional integral and derivatives
of a power function.

t>a. (14)

Proposition 5 (see [2, 32]). Let >0, v > 0, and t > a, then,
y-fractional integral and derivative of a power function are
given by

T (Y(s) —w(a) (1) = o
TR (w(s) - w(a)™ (1)
= F(l; ) (w(t)-w(a)" ™ n-I<a<nuv>n.
(15)
Lemma 6 (see [33]). Let m—1<a<m, n—1<f<n, n,m

eN,n<m, 0<p<land a>B+p(n-P). If f € C"([a, b],
R), then

Hb¥ gV i (1) = 74PV f (1), (16)

Lemma 7 (see [32]). If f € C"([a, b], R),
<l andy=a+p(n—a), then

n-1<a<n 0<p

n k
FEVH ey Z vi@)”
c Py V k +1) (17)

— 1— n—tx,
-V& PV s (a),

for all t € [a, b, where Vi £(£) = ((1/y' (£)) (dIdt))"f(2).

Lemma 8. Let I<a<2, 0<p<l,y=a+p(2—a), andz €
C([a, b], R). Then, x is a solution of the w-Hilfer hybrid frac-
tional integro-differential nonlocal boundary value problem



4
of the form
e y x(t)) =z a
D, [(g ) ;J hi(t, ().t € a b]|,
x(a) = 0,x(b) = m(x),
(18)
if and only if x satisfies the equation
x(t) = g(t,xm){ > T x(0)) + T (1)
() —y(@)" [ m)
" o) —w(a)” (g(b, m() 19)

- iyﬁ Y hy(b, m(x)) - J%(b)) }

Proof. Let x € C([a, b],
Applying the operator 75"
Lemma 7, we obtain

R) be a solution of the problem (18).
to both sides of (18) and using

x(t)
gtx(t) 5

= I3 zZ(t) +

TV (8, x(t))

M=

- -1
(w(t) —v(a)) ¢ (20)
L(y)
- y-2
» WO -v@)"
I'(y-1)
where ¢, ¢, € R. By using the first boundary condition,
x(a) =0, we get the constant ¢, = 0. From the second bound-
ary condition, x(b) = m(x), we find that

(21)
- Y TV h,(b, m(x)) —J;‘i‘”z(b)>.

Substituting the value of ¢; and ¢, in (20), we obtain (19).
Conversely, by a direct computation, it is easy to show
that the solution x given by (19) satisfies the problem (18).
The proof of Lemma 8 is completed.(J O

Let X = C(J, R) be the Banach space of continuous real-
valued functions defined on [a, b], equipped with the norm
[[[| = sup,efa) [%(¢)| and a multiplication (xy)(t) = x(t)y(t),
Vt € [a, b]. Then, clearly, X is a Banach algebra with above-
defined supremum norm and multiplication in it.

Lemma 9 (see [21]). Let S be a nonempty, closed convex, and
bounded subset of the Banach algebra X and A : X — X,
B : S — X two operators such that
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(a) A is Lipschitzian with a Lipschitz constant k
(b) B is completely continuous

(c) x=AxBy=x€SforallyeS§

(d) Mk < 1, where M = ||B(S)|| = sup {|Bx|: x € S}

Then, the operator equation x = AxBx has a solution.

3. Existence Result for the Problem (8)

In view of Lemma 8, we define an operator @ : X — X by

@x(t) { )3 Y Tt

)+ TS (6x(1))

L () - ()"
(w(b) ~ y(@)"" \ 9(b.m(x)

Zyﬁ Y hy(b, m(x)) - I (b,m(x))> }

Notice that the problem (8) has solutions if and only if
the operator @ has fixed points.

Theorem 10. Assume that:

(A,) The function g : [a, b] x R — R\ {0} is continuous
and there exists a positive function ¢, with bound |¢|, such
that

l9(t, x) = g(t:y)| < d(1)|x — (23)
fortela,b) and x, ye R

(A5) |hi(t, x)[ < A;(2), A; € C([a, b,

R), ¥(t,x) € [a, b] x R

vi= 1,2, mf (5 x)| < p(t)]g(t x)| < v(t),
Y(t,x) € [a, b] x Ry, v € C([a, b], R)
(A;) There exists a positive constant F > 0 such that
MmO % veec(a b R), (24)
|9(b, m(x))|

(A,) There exists a positive real number r > 0 such that

(v(b) ~y(a)”

VIl W

22 ﬁﬂ)) Al +2 ||M||+%]Sr.

i=1

(25)

Then, the w-Hilfer hybrid fractional integro-differential
nonlocal boundary value problem (8) has at least one solution
on [a, b], provided that

" (y(b) —y(a))P b) —y(a))®
|MHP2'“Fﬁ+1 e

|w+%}u.
(26)

Proof. We consider a subset S of X defined by S={xeX
. ||x|| < r}, where r satisfies the inequality (25). Observe that
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S is a closed, convex, and bounded subset of the Banach
space X. We set sup,c,u[Ai(0)]=[IAlLi=1,2,-m

supjqp |4(1)] = [|p]l> and sup,e,  [v(£)] = [ v]].
Next, we define two more operators & : X — X and

% : S — X as follows:

m(x) (27)

ifﬁwh b, m(x

i=1

Clearly, @x = o/x9Bx. In the next steps, we show that the
operators &/ and 9 fulfil all the assumptions of Lemma 9.
The proof is divided into three steps.(] |

Step 1. We show that the operator & is Lipschitzian with
Lipschitz constant k, i.e., condition (a) of Lemma 9 is ful-
filled. Let x, y € S. Then we have

[Ax(t) = Ay(1) =g (t,x(t)) - g(t. y(1))| (28)
<¢@)x(t) —y@) <[ ollllx =yl
Consequently,
(| x =yl < |$][[}x = y]- (29)

Hence, the operator & is Lipschitzian with Lipschitz
constant k = |||

Step 2. We show that the condition (b) of Lemma 9 is satis-
fied, i.e., the operator 8 is completely continuous on S. First,
we will prove its continuity. Let {x;(t)} be a sequence of
functions in S converging to a function x(t) € S. Then, by
the Lebesgue dominant theorem, for each t € [a, b], we have

) + I3 f(6x(1))
(v (>>“< m(x;)

(w(b) -y (a)) (b m(x;))
-foﬂh (b.m(x;)) = To¥ f (b, m(x )))}

lim Bx;(t) = lim {Zjﬁ Vit
i=1

j—00 j—00

™-

I
—

Jawhmh(tx())+a7“whmf(tx())

, j—0 j—00

, WO -y(@)" (hm m(x;)
y(b) -y (@) o g(bm(x))

yﬁw lim by (6, m(x;))

—~

MSA

I
—_

—f;*i*"jn;nmf<b,m<xj>>)
TEVh(t,x(1)) + TV (5 x(1))

(v(1) - y(a))" m(x)
(w(b) - (a))"" \ 9(bm(x))

TPV (b, m(x)) - IV F (b, m(x)))

(30)

Therefore, & is a continuous operator on S. Next, we
show that the operator & is uniformly bounded on S. For
any x € S, we have

B(0)] < YT i, x(0)) |+ T (6 ()
L WO-y@™ [ ()
(w(0) = y(@) \ [96. ()]

(y(b) ~y(a)"
H)‘ |+ ZW [l
(31)
Hence, || Bx||<M,Vtea,b], which shows that the
operator 9 is uniformly bounded on S. Now, we show that

the operator 9B is equicontinuous. Let f; <t, and x€S.
Then, we have

| Bx(t,) -

<)

Bx(t)]




(y(b) -y (a))

<|9(b me)] ZJ Y|y, m(x )|+J“"’|f(b,m(x))>

IN

if(‘gl‘ 1) ‘(V’(t )= w(a))f - (w(t,) - w(a))ﬂi‘

V() =y - () ~y(a)

L () —v@)" ™ - (y(h) - ()"

(¥(®) - y(@)"
—wlanP —wla)®
[%2( <1132 f(1>)) ”*fl“(wﬁza +w1())) ”M]_

(32)

As t, —t; — 0, the right-hand side tends to zero, inde-
pendently of x. Thus, 9B is equicontinuous. Therefore, it fol-
lows by Aezeld-Ascoli theorem that % is a completely
continuous operator on S.

Step 3. We show that the third condition (¢) of Lemma 9 is
fulfilled. For any y € S, we have

3/2,1/45(1-¢

H
:‘)1/2

[ x(t) am(i-e) 5/4;(1- ) x
s = )= 7 )] =
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[x(t)] = [Ax(t) By ()| = |/ x(t) | By (1)]
<lg(t. x(t))] [fofwlhi(f»y(f))l + 72 |f (6 y(D)]

i=1

im(y)]
|g(b, m(y))]

+

(w(t) = y(a) (
(w(b) - y(a))'™

+ ) T I (bm(y)| + T |f<b,m<y>>|ﬂ

< [22(‘”(}’2[;—‘fﬂ)”n |
+2W||y|| +¢%1 <r,

(33)
which implies ||x|| <7, and so, x € S.

Moreover, by (26), it holds kM < 1 which is fulfilled con-
dition (d) of Lemma 9. Hence, all the conditions of Lemma 9
are satisfied, and consequently, the operator equation x(¢)
=dx(t)%Bx(t) has at least one solution in S. Therefore,
there exists a solution of the y-Hilfer hybrid fractional
integro-differential nonlocal boundary value problem (8) in
[a, b]. The proof is finished.

Now, we present an example of y-Hilfer hybrid frac-
tional integro-differential boundary value problem to illus-
trate our main result.

Example 11. Consider the boundary value problem of the
form

e~ 2(1) xt(1) cos’x(t) 1 17
+ + —,te |-, =,
a+6\1+x4())  26t+3 16" [2°2

(1) =0xG) =2 () 2 (o)) 0 (+(3))

where

tlx]
t,X)= ————— +2t+5,h,(t,
g( x) 7(1+|X|) 1( X) 3
1 7(x4/(1+x4)) .4 ( )
—e Sin - X
= h(tx) s .
2t+1 3 + cos“mt

Here, a=3/2, p=1/4, y(t)=1-¢2, a=1/2, b=7/2,
B,=3/4, B,=5/4, and m(x)=2sinx+3 cosx+4 tan 'x.
Then, we can find that

(34)

19(6:%) - 9(6.7)] < S - (36)

and we choose ¢(t)=t/7. In addition, |h,(t,x)| < (1/(2t+
1) =4, (8), [hy(t, ) < (1/(3 + cos’mt)) = A, (8), [f(t, %) <
(1/(4t +6)) + (1/(26t +3)) + 1/16 = u(t), |g(t, x)| <t/7 + 2t
+5:=v(t). Then, we have ||¢| =1/2, ||A,]| =1/2, ||A,|| =1/
3, |||l =1/4, || v|| = 25/2 and

|m(x)| - 5+21
972, m(x))| = 12 x, (37)
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which lead to

o |2, 2 Y e 2O+
~(0.8524738760 < 1.
(38)

Therefore, by Theorem 10, the y-Hilfer hybrid fractional
integro-differential nonlocal boundary value problem (34)-
(35) has at least one solution x() on [1/2,7/2], such that |x
|<r, where r is satisfies

g+ 2 PO V@S

()
v |23 R g G

i=1
~21.31184690 <r.

(39)

4. Existence Result for the Problem (9)

First of all, we recall some basic concepts for multivalued
maps [39-41]. For a normed space (X, |- ), let Popev(X )

={Y € Z(X): Y iscompactand convex}. For each x¢€X,
define the set of selections of F by

Sex={veL'([a b], R): v(t) € F(t,x(t)),

(40)

Lemma 12 (see [42]). Let F : [a,b] xR — P, ., (R) be an
— Carathéodory multivalued map and let © be a linear

continuous mapping from L'([a, b], R) to C([a, b], R). Then,
the operator
@0 Sp: C([a, b], R) — £, (C([a, b], R)), (41)
x> (@0 S8p)(x) =0O(Sg,)s
is a closed graph operator in C([a, b], R) x C([a, b], R).

Remark 13. We recall that a multivalued map F : [a,b] x R
— P(R) is said to be L'-Carathéodory if (i)
t— F(t,x) is measurable for each x € R; (ii) x — F(t, x)
is upper semicontinuous for almost all ¢ € [a, b}; (iii) for each
a>0, there exists ¢, € L'([a, b], R*) such that ||F(t,x)|| =
sup {|v|: ve F(t,x)} < ¢, (t) for all x e R with ||x|| <« and
for a.e. t € [a, b)].

The following multivalued fixed-point theorem for the
product of two operators in a Banach algebra, due to Dhage
[38, Theorem 4.13], plays a key role in proving the existence
result for the nonlocal boundary value problem (9).

fora.e.t € [a, ] }

Lemma 14 (see [38]). Let X be a Banach algebra and let A
: X — X be a single valued and B: X — P, . (X) be a

multivalued operator satisfying the conditions:

(a) A is single-valued Lipschitz with a Lipschitz constant
k

(b) B is compact and upper semicontinuous

(c) 2Mk < 1, where M = ||B(S)|| = sup {||Bx||: x € S}

Then, either (i) the operator inclusion x € AxBx has a
solution or (ii) the set &={ueX|AueAuBu,A>1} is
unbounded.

Definition 15. A function x € AC([a, b], R) is a solution of
the problem (9) if x(a)=0,x(b) =m(x), and there exists
function v € L' ([a, b], R) such that v(t) € F(t, x(t)) a.e. on |
a,b] and

*(1) = 9<f>x<f>>{ > T (b x(0) + I v(e)

i=1

(42)

Theorem 16. Assume that (A,;) and (A;) hold. In addition,
we suppose that

(B)) F:la,b]xR— P
multivalued map;

(B,) The functions g and h;,i=1,2, -
tion (A,);

(B;) There exists a continuous function q € C([a, b], R*)
such that

(R*) is L'-Carathéodory

cpscv

-, n satisfy condi-

IE(t, x)ll o = sup {|y|: y € F(t, x)}

<q(t), foreach(t,x)e (43)

[a, b] x R.

Then, the nonlocal y-Hilfer hybrid inclusion boundary
value problem (9) has at least one solution on [a, b], provided
that

0- ||q||{2”q'%?lef(a))a

+2; Fﬁ+1) |A||+zf}

Proof. To transform the boundary value problem (9) into a
fixed-point problem, by using Lemma 8, we define a multi-
valued operator Q; : X — P(X) as



heX:
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Qx= " wy, o (W) —y(@)"
h(t) = , hi(t, x v
{ (* {ﬂt(n{gf i(tx(0) + 7, uhww_wwyl((hm

Next, we introduce the operator & : X — X as in (27)
and the multivalued operator %, : X — P(X) by

Zn:Jﬁ V’h (b, m(x)) au’v(b)) },VESF)x,tE [a, b]. }

i=1

(45)

heX:

Byx- . o (0~ y(@)"
h(t)=g(t, x T hy(t, x Ty -1
{“)g“(m{; 7O o)~ yiayy

We will show that the operators &/ and 9, satisfy the
hypotheses of Lemma 14. The proof is given in a series of
steps.

Step 1. B, is convex valued. Let z,,z, € 98,. Then, there
exist v}, v, € Sp, such that

y-1

S i5 o t)—vw(a

. (g( . _iljﬂ Yhy(b )—JZf”v](b)>,

<g(:,17(:()x)) - gjff"’h,»(b, m(x)) - in%(b)) ,VESpt€ab]. }

(46)

S. We prove first that the operator 9, is completely contin-
uous. Let x € %, (S). Then, there exists v € Sy such that

(w(t) - ()"
(w(b) —w(a)
: <g(£¢ (*) ij“ Y hy(b, m(x)) - J;‘”v(b))

i=1

)= Y TEVh(t,x(t)) + T v() +
i=1

j=12. for any x € S. Then, we have
(47)
For any 0 € [0, 1], we have ()| <275 [v(b)| + g( +2Zf”|h b, m(x))|
- 2 b) —y(a))* L b) — y(a))P
Ozl(t):(l 0)z,(t) | < IIOII(?(((X)+ IR)U( ) +2;(W(F2/3if(l))) A
- ;yﬁ Vit x(t)) + I [0v, (1) + (1 - 0)w,(1)] v =M,
(50)

(w(t) -y(a)"" [ mx)
'\ g(bm(x))

S I by, m(x)) -

i=1

T [0 (b) + (1= 9)Vz(b)]) :
(48)

Since F(t,x(t)) is convex, Ov,(t) + (1 — 0)v, () € F(t, x(
t)) for all t € [a, b], and so, 0z, + (1 -0)z, € Sp.. Thus, 0z,
+ (1-0)z, € F(t,x(t)), which means that &, is convex val-
ued on X.

Step 2. o/, is single-valued Lipschitz operator on X. It is
proved in Step 1 of Theorem 10.

Step 3. The operator %, is completely continuous and
upper semicontinuous on X. Let S be a bounded set of X.
Then, there exists a constant r such that ||x|| <, for all x €

for all ¢ € [a, b], which implies that ||x|| < M,. Therefore, the
operator 93, is uniformly bounded on X.

Next, we show that 9, (S) is an equicontinuous set in X.
Let t, t, € [a, b] with t; < t, and x € %,(S). Then, we have

| B x(ty) — By x(ty)]

n 1 t ,
< 2IFE) L‘” S

=1

= (W() = ()P | (s, () ds

) [w(t) - v()P

v ﬁjjw’(s)(wm) ()P (s, x(5))ds
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+ ﬁ j W (5 (W(ty) - y()  v(s)ds

— (@) = (y(ty) —w(a)""|
(w(b) - w(a))y“
Z (93 ’+”1) ‘(w(tz) —y(a)f — (y(t)) —W(“))ﬁ"

4]l

+ |(W(t2)

IN

o 79| V(2 ~ V(@) = ((0) ~¥(@)"]
L@ —v@)™ - (wi) - y(@)"|
(y(b) - y(a)"
)

I'(a+1)
(51)

As t, — t; — 0, the right-hand side of the above inequal-
ity tends to zero independently of x, and thus, the operator %,
is equicontinuous. In consequence, the operator %, is
completely continuous by the Arzeld-Ascoli theorem.

Next, we show that 98, is an upper semicontinuous multi-
valued mapping on X. It is known, by [[39], Proposition 1.2],
that %, will be upper semicontinuous if we establish that it
has a closed graph, since already shown to be completely con-
tinuous. Thus, we will prove that %, has a closed graph.

Let {x,} be a sequence in X such that x, — x*. Let
{y,} be asequence such that y, € %,x, and y, — y*. We
shall show that y* € %,x*. Since y, € B,x,, there exists a
v, € Sp, such that

(w(t) - y(a)""

x njﬁwh x Iy
SOEDY i(6x(8) + I g va(t) + (@)

= (y(b)

: ( m(x zﬂ Yhy(b, m(x)) - IV, (b)),
g(b
te [a, b].
(52)
We must prove that there is a v* € Sp,. such that
. n v £ — a y-1
X (t) = Zfﬁ Vi (b x(1)) + 75 (8) + M

P (v(b) - v(a))
Zfﬁ Y hy(b, m(x)) - Iy *(b)),

(53)

'(Z(W(rbzﬁ_f%) A+ g Y- v@)” +%)_

Consider the continuous linear operator L : L'([a, b], R)
—> C([a, b], R) defined by

=

v jﬁ y/h X ju;j/v (V/(t) B W(a))y_l
B0 = 2Tt x(0) + 7, ““(w(b)—w(a»y—l

. (g( ’Tl(x x ijﬁ Wh ) _ Jﬁ'v(b)) ,
t€[a, b]
(54)
Observe that
%, (8) = %" (1) = |25 a(s) = v* ()] — 0, (55)

as n— 0o. From Lemma 12, it follows that Lo Sy is a
closed graph operator. Further, we have y, (t) € L(Sy). Since
y, — ", therefore, we have

anfﬁwh t, x(t

i=1

)+ Il v ()

m(x)

g9(b, m(x))

(w(t) - y(a))"" (

i=1

y TPV (b, m(x)) - JZJ”V*(b)), te(ab].

(56)

As a result, we have that 9, is a compact and upper semi-
continuous operator on X.

Step 4. We show that the condition (c) of Lemma 14
holds, that is, kM < 1/2. This is obvious by (44).

Step 5. Finally, we show that the conclusion (ii) of
Lemma 14 does not hold.

Let x be any solution of the boundary value problem (9)
such that Ax € #/x%,x for some A > 1. Then, there is a v e
Sg. such that

x(t) = %g(tx(t)){ > T il x(0) + T (1)

(57)
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Then, we have

™M=

(@) <g(t. x(f))l{

+ I v(t)] +
Zfﬁ* m(x))|+ T |v<b>|} (58)
< ||v||{2||q|(‘”?;“

Jrzlz1 ‘”(Ilfﬁ +1)) I, ||+3:f}

1/4ilog, (2+1) 7/4log, (* +1)h

7/4,3/50g, (P+1) [ x(t)
i e

1 11 (2 2(5/4 7 9
Z)=0,x(—) =5e X2(3)+2L +7 sin’x > + 3 cos®x_.
4 4 2(5/4) + 1 4 4

where

8t [x*+2|x|
4+ 1\ 1+|x|
- ad

RCEEED o

sin’x
= 7,11 t, =
(12t +2) 3(5%)

g(t,x) = ) +4t+7,h (1, x)

Here, a=7/4, p=3/5, y(t)=log,(t*+1), a=1/4, b=
11/4, B, =1/4, B, =7/4, B, =11/4, m(x)=5¢"* + (2x%/(x*
+1)) + 7 sin’x + 3 cos®x. Now, we find that |k, (¢ x)|< (1
1(8t+1))=A,(t), |hy(t,x)] <(1/(12¢t+2)) = A, (¢), and |k,
(t,x)| < (1/(16t + 3)) = A;(t) which yield ||A,||=1/3, ||A,]|
=1/5, ||A;|| = 1/7. In addition, we have

e < 15 =
,m(x
I (62)

Fba)ps ot mg(t)

1EEAo < 35755 * @resye — 10
which implies ||q|| = 1/8. Hence,

1
0= 04726347379 < - (63)

-F hy(tx(t) = F L (6x(1) =T 1

Advances in Mathematical Physics

Taking the supremum for ¢ € [a, b] of the above inequal-
ity, we obtain a constant M > 0 such that

(59)

which means that the set &={x€ X : Ax € SxRB;x, A > 1}
is bounded.

As a result, the conclusion (ii) of Lemma 14 does not
hold. Hence, the conclusion (i) holds, and consequently,
the boundary value problem (9) has at least one solution
on [a, b]. This completes the proof.(J O

Example 17. Consider the boundary value problem of the
form

ll/4;logs(t2+l)

—x*(t) 12 1 1 11
hy(t,x(t) | € |0,= £ )+ ,otel,—|,
4+15\1+x2) (4t +3) 4 4

(60)

Therefore, by applying Theorem 16, the y-Hilfer hybrid
fractional integro-differential nonlocal boundary value prob-
lem (60)-(61) has at least one solution on [1/4, 11/4].

5. Special Cases

The problem (8) considered in the present work is general in
the sense that it includes the following classes of new bound-
ary value problems of w-Hilfer fractional differential
equations.

(I) Let g(t,x) =1 and h;(t,x) =0,i=1,2,---,n for all ¢
€ [a,b] and x € R. Then, the problem (8) reduces to
the following y-Hilfer fractional boundary value
problem

t€a, bl,

He\%PY _
{ D x(1) = f (1 2(1)), (64)

x(a)=0,x(b) =

m(x).

In the case when p(x)=Y" 1,x(6;), where a<6, <6,
<---<0, < b, the corresponding y-Hilfer fractional bound-
ary value problem was studied in [34] for k =0.

(IT) Let h;(t,x)=0,i=1,2,---,n for all ¢ € [a,b] and x
€R. Then, the problem (8) reduces to the
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following y-Hilfer fractional boundary value prob- ~ References
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