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Abstract 
Five-electrode configurations were designed to simulate the distribution in-
homogeneity of electric field intensities in the air-insulating medium, and the 
characteristic data waveforms of partial discharge generated by different elec-
trode configurations under the excitation of power frequency AC voltage were 
carefully collected in this paper. Furthermore, the feature vectors of the cor-
responding fingerprint, contained in partial discharge data, were extracted by 
rigorous mathematical algorithms, and the artificial neural network was em-
ployed to realize the pattern recognition of partial discharge caused by the 
inhomogeneity of electric field intensity with different electrode configurations. 
The results indicate that the J4 value in the space of 7 feature quantities is 
1905.6, and the recognition rate is 100% when the hidden layer neuron of the 
network is 19. However, the J5 value of 9 feature quantities is 1589.9, and the 
purpose of recognition has been achieved when the number of hidden layer 
neurons of the network is 6. Increasing the number of hidden layer neurons will 
only waste computing resources. Of course, PD information collection mode, 
feature quantity selection, optimal feature space composition, network struc-
ture and classification algorithm are the key to realizing PD fault intelligence 
identification. 
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1. Introduction 

Practical experience and rigorous theoretical studies have proved that the Partial 
Discharge (abbreviated PD) phenomena are closely related to the insulation de-
fects or failures that happen in operating equipment such as switchgear, power 
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transformers, cables, as well as motor and generator stator windings [1] [2] [3]. 
Therefore, in addition to detection technology, data mining algorithms and 
processing techniques of PD signals and information have become a research 
hotspot in recent years.  

With the advancement of high-precision detection technology and the wide 
application of artificial intelligence algorithms, the great improvement of online 
monitoring and diagnosis technology for insulation faults of high-voltage equip-
ment has been achieved to a large extent [4] [5]. 

Over the past couple of decades, several classification algorithms of PD patterns 
have been proposed and tested, which adopt different approaches, using one or 
more of the different PD data patterns [6]. 

As well known, the PD phenomenon of gas insulation systems strongly de-
pends on the non-uniformity of the electric field and the characteristics of PD 
signals also obey certain mathematical statistical laws, so five kinds of electrode 
structures are designed to artificially simulate non-uniformity of the electric field, 
and PD signals of time-domain for five models are collected by specially designed 
experimental circuit, and the corresponding PD fingerprints are obtained through 
analysis and calculation of the data information. Furthermore, different combi-
nations of fingerprint features extracted from histograms are taken as input fea-
ture vectors to neural networks for training the classifier of BPNN and identify-
ing the corresponding five PD modes. The above research work and the results 
obtained are fully described in this paper. 

The article is organized as follows: Section 1 is a summary of the content re-
lated to this research subject. Experimental models of PD, original data of PD 
and fingerprint of PD are elaborated on in Section 2, and the feature extraction, 
rationality verification and class separability criterion are all analyzed and dem-
onstrated in Section 3. Section 4 includes the discussion of recognition results 
and analysis of the effect of hidden layers in BPNN on recognition rate, and Sec-
tion 5 illustrates some valuable conclusions. The contribution of this paper is to 
demonstrate the separability of partial discharge signal modes in gas dielectrics 
caused by the inhomogeneity of electric field intensity by experiments and 
theory. 

2. PD Model and Fingerprint Features 

As known by dielectric physics, the primary cause of triggering PD is the uneven 
electric field distribution in the local region of the insulation system, especially 
in high-voltage electrical equipment whose gas medium is the main insulation 
dielectrics, such as GIS (Gas Insulated Switchgear), gas-insulated power trans-
formers and so on, this type of problem is particularly obvious. Excluding the 
influence of impurities contained in the gas, the gas dielectric itself is especially 
sensitive to the unevenness of the electric field, and most of the triggers for PD 
are protrusions existing on electrode surface, metal fine particles freely moving 
between electrodes, and cracks rest in the supporting insulator [7] [8]. Although 
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different detection techniques can obtain various manifestations of the PD sig-
nals, “fingerprints” of the PD occurred due to defective insulation always having 
been deposited in the data pool. Hence, it is very practical significance for mod-
eling the PD triggered by the uneven electric field, collecting the signal waveform 
of PD, extracting fingerprint characteristics with the data mining techniques, es-
tablishing a set of vector spaces depicting the heterogeneity of each specific electric 
field, employing artificial intelligence algorithms to train the classifier ANN and 
finally realizing the intelligent identification of inhomogeneity of electric field 
intensity. The research methods and experimental results in this paper have ref-
erence significance for the diagnosis, prediction and residual life prediction of 
partial discharge faults of gas-insulated electrical equipment. 

2.1. PD Model and Experimental Procedure 

Based on the design principle of SCR series dry-type transformer insulation struc-
ture, this paper collects PD data information online during its operation and con-
ducts on-site anatomy of the equipment [9]. Meanwhile, one-to-one correspon-
dence related the geometric configuration of the PD fault location to the corres-
ponding PD information characteristics is analyzed and summarized in details. 
Therefore, five types of PD models are designed to provide experimental and theo-
retical basis for establishing standard database of PD fault diagnosis, location, 
classification and life prediction of SCR series dry-type transformer in service, 
and the aim is to realize finally the intelligent monitoring and warning for the 
equipment operating status [10]. 

For artificially simulating the unevenness of the electric field distribution, five 
pairs of experimental models are designed and made from the industry standard 
brass material, they are needle-needle, needle-plate, needle-sphere, sphere-plate and 
sphere-sphere electrode system respectively, the clearance distances of needle-needle, 
needle-plate and needle-sphere are all 12 mm, while gaps of the sphere-plate and 
sphere-sphere equals to 10 mm. The needle electrodes are all copper cylindrical 
with a diameter of 4 mm, and the tip angle is 30˚. Then the plate electrodes are made 
from copper circular plate, diameter is of 100 mm, surface polishing and edge 
chamfering, and two sphere electrodes are all solid copper ball, and their diame-
ters are of 10 mm and 20 mm respectively while the sphere surface polished. These 
five pairs of PD model are shown as in Figure 1. 

The discharge chamber is a cylinder made of plexiglass material with a di-
ameter of 450 mm, a height of 600 mm, and a wall thickness of 15 mm, as shown 
in Figure 2. Moreover, the chamber must be cleaned, dried and evacuated before 
the experiment, and then injected with clean and dry air. The experiment is car-
ried out under the conditions of IEC and GB, and the standard specifies that the 
atmospheric pressure equals to 0.1013 MPa, temperature is T = 20˚C and abso-
lute humidity 11 g/m3. In the field of electrical insulation technology, the four 
parameters that describe the insulating properties of gas dielectrics respectively 
are relative permittivity rε , electrical conductivity γ , dielectric loss angle tangent  

https://doi.org/10.4236/am.2022.1311057


Q. P. Zheng et al. 
 

 

DOI: 10.4236/am.2022.1311057 899 Applied Mathematics 
 

 
(a) 

 
(b)                           (c) 

 
(d)                           (e) 

Figure 1. Five pairs of the PD model. (a) Needle-needle electrode; (b) Needle-plate elec-
trode; (c) Needle-sphere electrode; (d) Sphere-plate electrode; (e) Sphere-sphere electrode. 
 

 
Figure 2. Schematic diagram of plexiglass chamber. 1. High voltage leads; 2. Insulator; 3. 
Seal ring; 4. Electrode system; 5. Air filler valve; 6. Pressure gauge and thermometer. 
 
tgδ  and breakdown field strength E



. Under IEC and GB conditions, the relative 
permittivity of air is 1rε ≈ , and the electrical conductivity is 171.8 10 S mγ −≈ × , 
the dielectric loss angle tangent under power frequency is 9tg 10δ −= , and the 
electric field strength of air is 30 kV cmE =



. 
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The pressure of the gas in the chamber depends on the needs of the experi-
ment, and the temperature is always maintained at 20 degrees Celsius. Accord-
ing to the requirements of the experiment, five pairs of PD electrode are fixed in 
sequence on the base of the chamber, not only the electrode gap can be adjusted 
free, but the electrode itself should also be easy to install and remove. 

The experiment work is carried out in an electromagnetic shielded laboratory, 
and the experimental principle is shown in Figure 3. The acquisition of the PD 
signals is performed by the Hipotronics DDX-7000 digital PD detector. In order 
to meet the needs of signal analysis, processing and PD identification classifica-
tion, PD signals are quickly acquired, stored and intercepted in integer multiple 
cycle lengths. In the whole experiment process of this project, 1000 original PD 
data are collected, that is to say 200 basic data were collected for each PD model, 
and the length of each data was 100 complete cycles. 

Therefore, the original PD data, corresponding to the five electrode structures 
described herein, are illustrated in Figure 4, which are triggered by power fre-
quency AC voltage. 

2.2. Basic Quantities of PD 

For the registration of basic quantities, the momentary values of the experimen-
tal voltage and the discharge signal were processed [11]. It is known that using 
conventional detection methods and the electrical activity of PD is represented 
by three independent quantities only: the discharge magnitude iq , the ignition 
voltage iu  and the position of the discharge related to the phase angle iϕ  of 
the test voltage. If during one half cycle of the test voltage more discharges occur, 
on the basis of iq , iu  and iϕ  several quantities can be calculated [12]. In this 
study, the following basic quantities were measured and processed as shown in 
Figure 5: the inception voltage incU  as a voltage at the sample at which discharge 
pattern in a half cycle of the test voltage starts, and qN  as the number of discharges 
for each halve period of the voltage cycle. Therefore, finally PD q nϕ − −  maps 
generated by the corresponding electrode have been gained shown in Figure A1 
(See Appendix to this article). 

According to reference [13] and reference [14], it is known that the statistical  
 

 
Figure 3. Schematic diagram of PD signal acquisition. Z1, Z2—low pass filter; T1—regulator; 
T2—transfmrmer; Cs—standard capacitor; Cx—Sample capacitance in the chamber; C1—coaxial sig-
nal cable; Rz—Detecting impedance. 
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(a)                            (b) 

  
(c)                            (d) 

 
(e) 

Figure 4. PD waveforms in one period of AC. (a) PD signal of the needle-needle; (b) PD 
signal of the needle-plate; (c) PD signal of the needle-sphere; (d) PD signal of the sphere-plate; 
(e) PD signal of the sphere-sphere. 
 

 
Figure 5. Distribution of discharge of single cycle. 

 
variation in PD occurs, both in magnitude and in the temporal behavior of partial 
discharges. This variation in the time is partly caused by statistical variations in 
the discharge phenomenon itself and is also partly the result of the changes in 
the discharge site. Therefore, the voltage cycle is divided into phase windows 
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representing the phase angle axis (0˚ to 360˚). If the observation takes place over 
several voltage cycles, four quantities can be determined in each phase window, 
i.e. the sum of the discharge magnitudes, the number of discharges, the aver-
age value of discharges and the maximum value of discharges. In the research 
process of this paper, the following phase-position quantities are processed just 
as reference [15]: the impulse count distribution ( )nH ϕ , which represents the 
number of observed discharges in each phase window as a function of the phase 
angle; the mean impulse height distribution ( )qnH ϕ , which represents the average 
amplitude in each phase window as a function of the phase angle. ( )qnH ϕ  is cal-
culated by dividing the total discharge amount in each phase window by the 
impulse number of discharges in the same phase window. These quantities, ob-
served throughout the whole angle axis, result in distributions of discharge re-
currence as a function of phase angle. Based on previous research, we already 
know that the discharges occur during a voltage cycle in two sequences, and for 
each half of the voltage cycle separate discharge patterns can be measured. But in 
the case of similar inception conditions for each half of the voltage cycle, similar 
discharge patterns can be expected. Therefore, ( )qnH ϕ  and ( )nH ϕ  are cha-
racterized by two distributions, i.e. ( )qnH ϕ+  and ( )nH ϕ+  for the positive half 
of the voltage cycle, and ( )qnH ϕ−  and ( )nH ϕ−  for the negative half of the vol-
tage cycle. 

2.3. Fingerprint of PD 

As mentioned above, the five different PD signal waveforms (shown in Figure 4) 
over a sinusoidal period are respectively divided into N phase windows, as illu-
strated in Figure 5. For each phase window n (pulse count), q (discharge quan-
tity) and ϕ  (phase angle) are calculated. Usually two distributions are deter-
mined: 1) ( )nH ϕ  gives the number of discharge impulses in each phase win-
dow, 2) ( )qnH ϕ  takes the average magnitude of the discharge pulses as a func-
tion of the phase angle. Therefore, the characteristic quantities of PD can be de-
fined as the reference [16]. 

Fingerprints obtained in the experiments are shown as a set of the histograms 
composed of PD statistical characteristic parameters, and the shape of each his-
togram could present the essential nature of PD signals. Then each feature of a 
histogram has statistical characteristics for specified PD type. Therefore, these 
statistical features are used as pattern character vectors of PD classification for 
our research objectives. In this paper, these statistical features include skewness 
( kS ), kurtosis ( uk ), asymmetry (A), cross correlation (cc) and phase factor ( fP ) 
that are all calculated based on the PD signals. These parameters are defined as 
follows: 

 

( )3
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i i
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=

− ×
=
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                       (1) 

where, ix  is the discrete value of phase window i, ip  is the probability of fre-
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quency of appearance for that value ix  in phase window i, µ  is the mean 
value i ix p⋅∑ , and σ  is the variance ( )22

i ix pσ µ= − ⋅∑ . The skewness 
represents the asymmetry of the distribution. If the distribution is symmetric, 

0kS = . If it is asymmetric to the left, 0kS > , otherwise 0kS < . 

( )4
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4 3
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i i
i

u
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= −
∑

                     (2) 

The kurtosis represents the sharpness of the distribution. If the distribution 
has the same sharpness as a normal distribution, 0uk = . If it is sharper than 
normal, 0uk > , and 0uk <  means it is flatter. Examples of these two statistical 
parameters are demonstrated in Figure 6. 

The discharge factor A describes the difference in the mean discharge level in 
the negative and positive distributions. It is defined as following:  

s

s

Q n
A

Q n

− −

+ +=                           (3) 

where, sQ+  and sQ−  are the sum of discharges of the mean pulse height distri-
bution in the positive and the negative half of the voltage cycle; n+  and n−  are 
the number of discharges of the mean pulse height distribution in the positive 
and the negative half of the voltage cycle.  

The cross correlation factor is calculated as: 

( ) ( )( ) ( ) ( )( )2 2 2 2

i j i j

i j i j

q q q q N
cc

q q N q q N

+ − + −

+ + − −

′∑ −∑
=

′ ′∑ −∑ ∑ −∑
        (4) 

where, iq+  is the mean discharge magnitude in window i of the positive half 
cycle and iq−  the mean discharge magnitude in the corresponding window in  
 

 
Figure 6. Illustration of different values for skewness kS  and kurtosis uk  of a distribu-
tion [4]. 
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the negative half cycle; N ′  is the number of phase windows per half cycle. Thus, 
if the shapes are the same, then 1cc = ; if they differ completely, then 0cc = . 

Phase asymmetry is: 

in
f

in

P
ϕ
ϕ

−

+=                            (5) 

where, inϕ+  and inϕ−  are the inception discharge phase of the positive and the 
negative half of the voltage cycle. The phase asymmetry fP  is used to study the 
difference in inception voltage of the positive and negative half of the voltage 
cycle. 

As known from the aforementioned discussion, statistical parameters of the 
PD pulse sequence are useful to describe the distribution histograms of the sev-
eral quantities of PD pulses. In general, it seems to be a better choice to use pa-
rameters which describe the shape of the distribution, rather than using absolute 
values which depend on the real data such as the mean value of the discharge 
magnitudes. Figure 7 shows 5 types of PD fingerprint acquired respectively, and 
each fingerprint contains 29 quantitative values, which is a set of unique spatial 
vectors that correspond to the PD events of the specified electrode configuration 
under periodic 50 Hz AC voltage. Therefore, these 5 types of PD fingerprint 
represent their intrinsic characteristics in the nature. In other words, five vector 
spaces are constructed and each is 29-dimension. Nevertheless, they are not di-
rectly utilized to carry out PD pattern classification. The reason is that due to the 
large number of data vectors, the structure of the classifier may be very complex 
and hence, the recognition algorithm cannot be completed successfully, then 
eventually the ideal classification effect may not be achieved. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 7. PD fingerprints of the five models. (a) Fingerprint of the needle-needle PD; (b) 
Fingerprint of the needle-plate PD; (c) Fingerprint of the needle-sphere PD; (d) Finger-
print of the sphere-plate PD; (e) Fingerprint of the sphere-sphere PD. 

 
As well known, the high-dimensional data space vector can be reduced to a 

low-dimensional space through related operations. This can not only reduce the 
data amount, but also convert complex problems into simple and easy-to-handle 
ones. There have been effective analytical methods applied in different fields of 
Artificial intelligence recognition for fault detection, diagnosis and prediction. 
Further, such methods have also been successfully applied in PD pattern recog-
nition and fault classification [17]. 

3. Feature Extraction of PD Fingerprint 

In general, intelligent recognition procedures include signal process, feature ex-
traction, classifier design, classification algorithm and result verification. How-
ever, any patterns which can be recognized and classified all have a number of 
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discriminative features. Thus, the first step in any recognition process is to con-
sider the problem of what discriminatory features to select and how to extract 
these features from the signal data. It is quite clear that the number of features 
needed for successful classification depends on the discriminative quality of the 
chosen features. 

3.1. Class Separability Criterion 

One of the crucial issues in classification is the curse of dimensionality, hence, a 
low-dimension feature space is desired for simplifying calculation and reducing 
costs. Therefore, features should be carefully selected for preserving the maximum 
class separability. In our study, the criterion based on within and between-class 
scatter values is adopted as the measure of discrimination at a set of histogram 
values. The within-class scatter value measures the scatter of feature vectors of dif-
ferent classes around their respective mean values, and the between-class scatter 
value is defined as the scatter of the conditional mean values around the overall 
mean value [18] [19]. Therefore, the class separability criteria are expressed as 
follows: 

1) Within-class scatter matrix: 

1

M

w i i
i

S PS
=

= ∑                           (6) 

where, iS  is covariance matrix of iw , which is calculated as follows: 

( )( )T
i i iS E x xµ µ = − −                       (7) 

Here, iP  is a prior probability of the class iw . Namely, i iP n N≈ , where in  
is the sample number of iw  in all samples N. 

2) Between-class scatter matrix: 

( )( )T
0 0

1

M

b i i i
i

S P µ µ µ µ
=

= − −∑                    (8) 

where, 0µ  is a global average vector 0

M

i i
i

Pµ µ= ∑ . 

3) Mixed scatter matrix: 

m w bS S S= +                            (9) 

4) Distance separability criterion: 

{ }1
w mJ tr S S−=                          (10) 

All in all, J presents the dispersion of vectors within the class and also the dis-
persion between the classes, and it is a criterion for judging the structure of vec-
tor space within a class and the separability between classes. A large value of J 
indicates that the space vectors within the class are reasonably constituted. The 
feature quantity extracted from the fingerprint of the class not only is able to 
completely characterize its similarity, but also can indicate that the distance be-
tween the classes is also large meaning that there is separation [20]. 
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3.2. Feature Selection 

It is shown from Figure 7 that 29 characteristic quantities are included in fin-
gerprint for each PD model. As evidenced by well-known theories and practices, 
too many characteristic quantities for recognition can make the structure of 
the neural network more complex and the training process more difficult and 
time-consuming. Therefore, it is a very important task to carefully select dif-
ferent combinations of feature quantities. This task not only requires a certain 
amount of practical experience and multiple experiments, but also it must be 
met principle of classification and verified by the class separability criterion. 
Hence, nine characteristic quantities are picked from the distribution function 

( )qnH ϕ  in each fingerprint of PD models, which are respectively kS + , kS − , uK + , 

uK − , sQ+ , sQ− , A, cc, fP . At the same time, the nine characteristics can be di-
vided into 5 groups, the first group X1 contains three quantities (A, cc, fP ), the 
second group X2 has four quantities ( kS + , kS − , uK + , uK − ), the third group X3 
has five quantities ( kS + , kS − , uK + , uK − , A), the fourth group X4 contains seven 
quantities ( kS + , kS − , uK + , uK − , sQ+ , sQ− , A), and last group X5 Contains all 
nine characteristic quantities ( kS + , kS − , uK + , uK − , sQ+ , sQ− , A, cc, fP ). 

Based on the distance separability criteria according to Section 3.1, we derive

1
177.3XJ = , 

2
41.9XJ = , 

3
1243.8XJ = , 

4
1905.6XJ =  and 

5
1589.9XJ =  re-

spectively. The J values show that 5 groups of feature combinations all satisfy the 
requirements of classification and have obvious separability, and moreover, X4 is 
particularly distinct. 

3.3. BPNN Classifier  

In this study, Back-Propagation Neural Network (BPNN) is used as classifier. 
Numerous studies show that BPNN, a rich learning algorithm, achieves good 
performance in the presence of memory, and is well-preforming in PD pattern 
recognition as well. The BPNN structure is shown in Figure 8.  

The BP algorithm is a form of supervised learning for the feed-forward ANN 
and it consists of two steps, namely forward and backward learning. Although 
the back-propagation algorithm can calculate the modified weights of the hidden 
layer in learning, there are several problems should pay attention to in the 
process of learning and training of BPNN. For example, the number of neurons 
each hidden layer, the initial weight settings, the setting of the learning step and 
inertial coefficient, and the case if the learning is trapped in local minimum, etc. 
These issues may affect the recognition performance of BPNN, and may even 
cause BPNN to fail to converge in the training process [21].  

 

 
Figure 8. Sketch of BPNN. 
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4. Result and Discussion 

The five sets of characteristic quantities selected are changed into five group in-
put-eigenvectors, and a three-layer neural network is built using the neural net-
work toolbox of the MATLAB. Then, each group input-eigenvector is used to 
train the specified neural network, and the optimal convergence effect of the neur-
al network is obtained by changing the number of hidden neurons and network 
parameters. 

4.1. Recognition Results 

Among all 200 sets of samples for each type of PD fingerprint, 75 sets are as 
training samples, the other 75 sets take as test samples and the last 50 sets are as 
verification samples. The training function is “traingdx”, and the training error 
curves of characteristic quantities X1, X2, X3, X4 and X5 are shown in Figure 9. 
Further, the number of hidden layer neurons is 6, 8, 10, 13 and 19 respectively. 
The recognition results are presented in Table 1.  
 
Table 1. Recognition results. 

Characteristics 
Recognition rate 

Test model 

X1 X2 X3 X4 X5 

Needle-needle 100% 95% 100% 100% 100% 

Needle-plate 95% 100% 100% 100% 95% 

Needle-sphere 100% 100% 100% 100% 100% 

Sphere-plate 100% 100% 0% 100% 100% 

Sphere-sphere 100% 100% 100% 100% 100% 

Total 99% 99% 80% 100% 99% 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

Figure 9. BPNN training curves. (a) Training curve of X1; (b) Training curve of X2; (c) 
Training curve of X3; (d) Training curve of X4; (e) Training curve of X5. 
 

It should be emphasized here that the five groups of curves in Figure 9 have 
implied the influence of neurons on the recognition results of the neural net-
work. For X1, X2, X3, X4 and X5, using the network structure of Figure 8, their 
input the number of feature quantities is 3, 4, 5, 7, and 9, respectively. Because 
the number of neurons in the input layer of each neural network should match it, 
the number of neurons in the input layer should be 3, 4, 5, 7, and 9, respectively. 
On this basis, the corresponding optimized neural network structure was ob-
tained through repeated experiments. The corresponding number of neurons in 
the hidden layer of the neural network were respectively 6, 8, 10, 13 and 19, and 
the output layer of the neural network must be the number of neurons is 5, be-
cause this paper is to identify five PD patterns, and according to the machine 
learning criterion described in the literature [22], the convergence criterion of 
the neural network learning and training in this paper is given. 

4.2. Effect of Hidden Layer Structure 

Table 1 shows that selected fingerprint can be a useful and informative charac-
teristic to identify PD modes under the condition that the hidden layer neurons 
are 19 except x3, but this does not mean that the more feature quantities, the high-
er the recognition result. Actually, the identification rate of characteristic quantity 
X4 is the highest out of 5 sets of input feature vectors, because the vector x4 best 
satisfies the class separability criterion. 

4.3. Effect of Hidden Layer Structure 

How to select the number of hidden layer neurons is a very complex issue, which 
often needs the designer’s experience and numerous experiments. There are  
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Table 2. Recognition results of X5. 

Hidden layer 
Recognition  
neuron rate 

Test model 

1 2 3 4 5 6 10 15 20 

Needle-needle 0 100% 100% 100% 100% 100% 100% 100% 100% 

Needle-plate 0 100% 100% 100% 100% 100% 100% 100% 100% 

Needle-sphere 0 100% 100% 100% 0% 100% 100% 100% 100% 

Sphere-plate 0 0% 100% 100% 100% 100% 100% 100% 100% 

Sphere-sphere 0 100% 0% 0% 100% 100% 100% 100% 100% 

Total 0 80% 80% 80% 80% 100% 100% 100% 100% 

 
currently no ideal analytic formulas and rules to follow. In this paper, the num-
ber of neurons in the hidden layer is chosen according to Kolmogorov’s theorem 
[23]. Table 2 shows that the hidden layer structure of BPNN has an obvious ef-
fect on the recognition results, especially for a certain type of electrode model. 
When the number of hidden layer neurons is 6 or above, the neural network can 
obtain a recognition rate of 100%. However, excessive hidden layer neurons in 
artificial neural networks may have the following problems: 

1) The structure of artificial neural networks is too complex, which not only 
requires more time to train, but also increases the cost. 

2) Because the network structure is too complex, its convergence becomes 
slow or even fails to converge. 

3) Due to the complex network structure, its robustness and fault tolerance rate 
are greatly reduced.  

To sum up, the artificial neural network structure optimization is also a tech-
nical problem that cannot be ignored besides the correct acquisition of the orig-
inal signal of the PD, the determination of the PD mode class and the selection 
of a reasonable PD feature vector. As shown in Table 2, X5 is a reasonable set of 
the PD feature vector in the midst of the PD fingerprint, and when there are 6 
neurons in the hidden layer, the recognition rate of the network has reached 
100%, which means that the network structure and performance at this time are 
the best, at the same time, having the best classification effect is a matter of 
course. 

5. Conclusions 

The research in this paper deliberately simulates five kinds of electric field inten-
sity distributions. Through the experiments, the original PD signals are collected, 
and five kinds of PD fingerprint patterns are established. According to the class 
separability criterion, the input feature vectors of the ANN are carefully selected 
from the PD fingerprint, they are X1, X2, X3, X4 and X5. The J values show that 5 
groups of feature combinations satisfy the requirements of classification and 
have obvious separability. Furthermore, the effect of input feature vectors, the 
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number of neurons in the hidden layer and the recognition rate of ANN are dis-
cussed experimentally. The conclusions obtained are as follows: 

1) The PD models structured five kinds of electrode systems truly simulate 
different electric field distributions, and these PD signals have obviously statis-
tical behaviors. Further, the extracted fingerprint features not only can correctly 
characterize the intrinsic difference of gas-insulation PD, but also have distinct 
class separability. These findings are supported by the experimental results shown 
in Figure 4 and Figure 7. 

2) Although the feature selection and extraction from PD fingerprint is a 
complex process, it can be implemented using effective algorithms. Therefore, a 
reasonable set of PD characteristics can not only avoid the curse of dimensional-
ity, but also it can simplify the design of the classifier and improve the effect of 
pattern classification. This conclusion has reference value and guiding signific-
ance for further research on PD pattern classification technology, as shown in 
Table 1. 

3) After the PD pattern characteristics and pattern classes are determined, the 
choice of the hidden layer structure is a key issue, and even it is decisive. As 
shown in Table 2, 6 neurons in the hidden layer are the best structure of the 
network. If less than 6 neurons, a low recognition rate is caused. However, if there 
are more than 6 neurons, the recognition rate can be guaranteed, but the network 
structure becomes complicated and the learning process may be time-consuming, 
and can be not even converged. 

Although intelligent PD pattern recognition is a complicated task, with the 
advancement of computing technology and the improvement of artificial intelli-
gence, PD pattern recognition technology is also developing rapidly towards the 
intelligent direction. However, there are still many problems to be further explored 
to meet the needs of industrial development. 
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(e) 

Figure A1. PD q nϕ − −  maps of five kinds of electrodes. (a) q nϕ − −  map of the needle-needle PD; (b) q nϕ − −  map of 
the needle-plate PD; (c) q nϕ − −  map of the needle-sphere PD; (d) q nϕ − −  map of the sphere-plate PD; (e) q nϕ − −  map 
of the sphere-sphere PD. 
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