
Applied Mathematics, 2022, 13, 878-895 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2022.1311056  Nov. 24, 2022 878 Applied Mathematics 
 

 
 
 

Effective Finite-Difference Techniques for 
Estimating Sensitivities for Stochastic 
Biochemical Systems 

Fauzia Jabeen, Silvana Ilie* 

Department of Mathematics, Ryerson University, Toronto, Canada 

 
 
 

Abstract 
Cellular environments are in essence stochastic, owing to the random cha-
racter of the biochemical reaction events in a single cell. Stochastic fluctua-
tions may substantially contribute to the dynamics of systems with small copy 
numbers of some biochemical species. Then, stochastic models are indispensa-
ble for properly portraying the behaviour of the system. Sensitivity analysis is 
one of the central tools for studying stochastic models of cellular dynamics. 
Here, we propose some finite-difference strategies for estimating parametric 
sensitivities of higher-order moments of the system state for stochastic discrete 
biochemical kinetic models. To reduce the variance of the sensitivity estima-
tor, we employ various coupling techniques. The advantages of the proposed 
methods are illustrated in several models of biochemical systems of practical 
relevance. 
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1. Introduction 

In recent years, stochastic models have been successfully utilized for capturing 
the discrete nature of intracellular networks and the randomness of the molecu-
lar interactions, when some biochemical species are available in low amounts [1] 
[2] [3]. By contrast, deterministic formulations of the standard theory of chemi-
cal kinetics are unable to describe the effects of such random fluctuations and, 
on many occasions, can not reliably depict the average behaviour of the sys-
tem [4]. For such networks, the evolution of the molecular populations can be 
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represented by continuous time discrete space Markov processes. Chemical 
Master Equation is a discrete stochastic model which adequately describes the 
evolution of well-stirred biochemical networks [5]. This formulation can be 
solved directly just for a few simple systems. In most cases, the solution of the 
Chemical Master Equation can solely be approximated numerically, frequently 
by applying Monte Carlo strategies. Among the Monte Carlo methods which 
compute exact realizations of the Markov process modelling the evolution of a 
biochemical system are the stochastic simulation algorithm of Gillespie [6] [7] 
and the algorithm based on the random time change representation of Kurtz [8]. 
Numerical methods to simulate approximate realizations of this Markov process 
were also proposed in the literature (see, e.g. [9] [10] [11] [12] [13] and refer-
ences therein). 

Biochemical reaction models depend on a number of reaction rate parameters 
[14]. In many instances, the values of these parameters are inadequately meas-
ured. Hence, it is important to investigate the sensitivity of the model behaviour 
with respect to changes in the parameter values [15]. Studying how the dynamics 
of the system respond to small fluctuations in the model parameters is the sub-
ject of local sensitivity analysis. Among the applications of parametric sensitiv-
ity, we mention identifiability analysis, parameter estimation, fine-tuning of 
the model and guiding model reduction [16] [17] [18]. The existing methods to 
estimate parameter sensitivities of biochemical reaction networks often rely on 
simulations of exact methods such as the stochastic simulation algorithm (SSA) [6] 
[7], the Random Time Change (RTC) algorithm [19] or the Next Reaction Method 
(NRM) [20] [21]. Monte Carlo techniques are utilized together with finite-difference 
schemes to approximate local parametric sensitivities [16] [19] [20] [22] [23]. 
More precisely, the sensitivity of the expected value ( )( ),t c c ∂ ∂  f X  is es-
timated by finite differences such as ( )( ) ( )( )( ), ,t c h t c h   + −    f X f X . Here, 
[ ]⋅  is the expected value, f  represents the function of interest, ( ),t cX  de-

notes the state of the system at time t, depending on the parameter c. Among the 
existing finite-difference sensitivity estimators of the stochastic biochemical ki-
netic models are the Common Random Number (CRN), the Common Reaction 
Path (CRP) [19] and the Coupled Finite Difference (CFD) [20] methods, which 
rely on the SSA, the RTC and the NRM algorithms, respectively, to simulate 
sample paths. These methods employ coupling of the nominal and perturbed 
trajectories to reduce the variance of the sensitivity estimator. Unfortunately, the 
existing applications focused exclusively on approximating the sensitivity of the 
expected value of various molecular species, ( ),t c c∂ ∂   X , and there are no 
studies dedicated to sensitivity estimations of higher moments, such as the va-
riance of the state vector ( ),t cX . Nonetheless, the sensitivity of the variance of 
the system state may be critical for many models arising in practice, such as for 
systems with large levels of noise or for which the intrinsic noise drives the sys-
tem behaviour. For such models, examining only the robustness of the mean 
trajectory with respect to changes in various parameters will not be sufficient for 
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studying the influence of these parameters on the system dynamics and the level 
of noise. 

In this paper, we introduce some sensitivity estimators with respect to kinetic 
parameters of higher-order moments (e.g. variance) of the system state of a sto-
chastic discrete biochemical model. These estimators make use of the Common 
Random Number, the Common Reaction Path and the Coupled Finite Differ-
ence schemes to generate coupled trajectories, and central finite-difference strategies 
to accurately approximate the sensitivities of higher-order moments. The coupl-
ing reduces the variance of the estimator, yielding a more efficient simulation for 
a similar accuracy of the output. We note that the analysis tools developed in this 
work have no counterpart for the simplified, deterministic model of well-stirred 
biochemical systems, unlike the sensitivity analysis methods for the expected 
value of the system state. The proposed methodologies are particularly useful for 
models with moderate to large levels of noise, for which a more comprehensive 
sensitivity analysis is crucial for studying the model behaviour. Additionally, we 
expect these tools to be valuable for a range of applications of local sensitivity 
analysis, such as guiding model reduction and identifiability studies, for bio-
chemical networks whose intrinsic noise exerts a significant influence on the 
dynamics. The intrinsic noise consists of random fluctuations due to the biochemi-
cal reaction events, in particular associated with low molecular amounts of some 
reactants. 

This work is organized as follows: Section 2 discusses the background of sto-
chastic discrete models of well-stirred biochemical networks and their simula-
tion strategies. Some existing parametric sensitivity techniques are described in 
Section 3. In Section 4, the proposed finite-difference sensitivity estimators of 
higher-order moments of the biochemical system state are presented. The fea-
tures of the proposed techniques are reported in Section 5, where numerical tests 
are performed on three models arising in applications. Lastly, our conclusions 
are drawn in Section 6. 

2. Background 
2.1. Stochastic Modelling of Homogeneous Biochemical Systems 

Let us consider a system of N biochemical species 1, , NS S , experiencing M 
chemical reactions, 1, , MR R . The system is contained in a constant volume 
Ω  and is held at a constant temperature T, in a spatially homogeneous regime. 
Denote by the vector ( ) ( ) ( )( )T

1 , , Nt X t X t= X  the state of the system at time 
t, where ( )iX t  is a non-negative integer indicating the number of molecules of 
species iS  at time t. The number of molecules for each species at the initial 
time 0 0t =  is given, ( )0 0X t x= . 

A reaction jR  is specified by the associated propensity function ( )ja ⋅  and 
stoichiometric vector jν . The propensity of the j-th reaction is such that 

( )ja x dt  measures the probability that one reaction jR  fires during the time 
interval [ ),t t dt+ , assuming that ( )t =X x . The state change vector jν  de-
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picts the variation in the molecular amounts of all chemical species when a reac-
tion jR  happens. More precisely, if ( )t =X x  is the system state at time t, 
then the firing of one reaction jR  in the time interval [ ),t t dt+  brings the 
system to state ( ) jX t dt ν+ = +x . The entry ijν  of the state change vector 

( )T
1 2, , ,j j j Njν ν ν ν=   measures the variation in the jS  molecular count after 

a single reaction jR  occurs. Finally, ( )1 ,1ij i N j M
ν ν

≤ ≤ ≤ ≤
=  denotes the stoichiome-

tric matrix of the biochemical reaction system. 
The Chemical Master Equation [5] represents the evolution in time of the 

conditional probability ( )0 0, | ,P t tx x  of the system being at time t in state 
( )t =X x , on the assumption that at time 0 0t =  it was in state ( )0 0X t = x . The 

Chemical Master Equation,  

( ) ( ) ( ) ( ) ( )0 0
0 0 0 0

1

d , | ,
, | , , | , ,

d

M

j j j j
j

P t t
a P t t a P t t

t
ν ν

=

 = − − − ∑
x x

x x x x x x  (1) 

is a stochastic discrete model of well-stirred biochemical networks. For most 
networks arising in applications, this model is very difficult to solve directly [24]. 
To overcome this difficulty, Monte Carlo simulations may be employed that 
generate trajectories in agreement with the solution of the Chemical Master Eq-
uation. Let us remark that the system state ( )tX , governed by the Chemical Master 
Equation, may be expressed using the Random Time Change representation of 
Kurtz [8],  

 ( ) ( ) ( )( )( )0
1

0 d ,
M t

j j j
j

t Z aν θ θ
=

= +∑ ∫X X X               (2) 

where jZ  are independent Poisson processes with unit rates, for 1 j M≤ ≤ . 

2.2. Stochastic Simulations of Homogeneous Biochemical Systems 

Some of the widely used exact Monte Carlo simulation strategies for the Chemi-
cal Master Equation are the Stochastic Simulation Algorithm (SSA) due to Gil-
lespie [6] [7] and the Reaction Time Change (RTC) method [19] [25]. These 
strategies are utilized for reconstructing the probability distribution of the bio-
chemical system state. Furthermore, the SSA and RTC schemes are employed for 
computing the coupled paths for estimating sensitivities with the Common Random 
Number and the Common Reaction Path algorithms, respectively. A modified 
Next Reaction Method, which is an exact Monte Carlo scheme, is applied by the 
Coupled Finite Difference strategy (see [20] for details). 

Stochastic Simulation Algorithm 
The SSA proposed by Gillespie [6] [7] generates an exact realization of the 

Markov process representing the system state. At each step, the algorithm com-
putes the time and the index of the reaction that occurs first and updates the 
system accordingly. Gillepie’s algorithm is outlined below.  

1) Initialize the state 0=X x  at initial time 0t t= .  
2) Calculate the propensity functions ( )ja X , for 1 j M≤ ≤ , and their sum 

( ) ( )0 1
M

jja a
=

= ∑X X .  
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3) Pick two independent samples 1u  and 2u  from the uniform distribution 
( )0,1U .  

4) Choose the time to the next reaction as 
( )0 1

1 1ln
a u

τ =
X

.  

5) Determine the index   of the next reaction, namely the smallest integer 
for which ( ) ( )2 0 1 jju a a

=
< ∑X X .  

6) Update the state ν← +


X X  as well as the time t t τ← + .  
7) Go to step 2 or stop.  
Random Time Change Algorithm 
An alternative exact Monte Carlo simulation method for stochastic discrete 

biochemical kinetic models is the Random Time Change algorithm proposed by 
Rathinam et al. [19]. Remark that the internal time of each reaction jR  with 
1 j M≤ ≤ , associated with the physical time t, can be expressed as  

( ) ( )( )
0

d .
t

j js t a θ θ= ∫ X  

According to the representation (2), the number of occurrences of jR  during 
[ ]0, t  is ( )( )j jZ s t . Here jZ , with 1 j M≤ ≤ , are independent until rate Pois-
son processes. Given M streams of unit exponential random numbers, j

nE , with 
1,2,n =   and 1 j M≤ ≤ , execute the following steps (see [19] for a comprehen-

sive description):  
1) Initialize 0n = , the time 0nT =  and the state ( ) 0nT =X x .  
For 1,2, ,j M=  , take 1jk = , 1

j jI E+ =  and the internal time of the jR  
reaction, 0jσ = .  

2) For 1,2, ,j M=  , evaluate ( )( )j na TX .  

3) Pick 
( )( ) ( )1

1min j
j M j

j n

t I
a T

δ σ≤ ≤ +

  = − 
  X

. Determine   the index for 

which minimum is obtained.  
4) Update the time 1n nT T tδ+ ← +  and the state ( ) ( )1n nT T ν+ ← +



X X .  
5) For 1,2, ,j M=  , update the internal time ( )( )j j j na T tσ σ δ← + ⋅X .  
6) Set 1k k← +

 

.  
7) Take kI I E+ +← +



   .  
8) Set 1n n← +  and go to step 2 or stop.  

3. Parametric Sensitivity 

Parametric sensitivity assesses the influence of the model parameters on the bi-
ochemical system dynamics. Particularly, it is an important technique when the 
values of some of these parameters are inaccurate or uncertain. Local sensitivity 
analysis investigates how the system behaviour is altered by small variations in 
model parameters. A large local sensitivity of the system state with respect to a 
parameter suggests that the effect of inaccuracies in that parameter measure-
ment is also expected to be substantial. This calls for a more precise estimation 
of the parameter of interest. In such cases, we say that the model is sensitive with 
respect to fluctuations in that parameter. Otherwise, the biological model is ro-
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bust relative to variations in the parameter under consideration. For the deter-
ministic framework, computing the sensitivities ( ),iX t c c∂ ∂  involves solving 
systems of coupled ordinary differential equations. By contrast, in stochastic 
models, estimating the parametric sensitivities ( )( ),t c c ∂ ∂  f X , where f  is 
a function of interest and [ ]⋅  is the expectation, is quite a challenging prob-
lem. Here c is one of the model parameters. It often happens that the Chemical 
Master Equation is a very high dimension model. Indeed, it is a system of ordi-
nary differential equations with one equation for any possible state of the sys-
tem. 

In the literature, there are several approaches for estimating local sensitivities, 
finite-difference strategies being among the most efficient and popular ones [16] 
[19] [20]. The sensitivity ( )( ),t c c ∂ ∂  f X  may be approximated, for example, 
by the forward finite-difference scheme ( )( ) ( )( )( ), ,t c h t c h   + −    f X f X , 
where h is a small perturbation of the parameter of interest c. The expected val-
ues ( )( ),t c h +  f X  and ( )( ),t c   f X  are approximated by Monte Carlo 
simulation methods. To reduce the variance of the sensitivity estimation and 
thus to more efficiently compute the approximation with a comparable accuracy, 
we couple the nominal and perturbed trajectories. This is done by employing 
common random numbers. The coupled perturbed and nominal trajectories 
may be simulated by Gillespie’s direct method [6] [7], the RTC algorithm [19], 
the next reaction method and the Random Time Change representation [20] or 
the tau-leaping schemes [16] [22]. These methods were applied for determining 
the sensitivities of the expected value ( ),t c   X . Some effective techniques for 
approximating local parametric sensitivities are the Common Random Number, 
the Common Reaction Path [19] and the Coupled Finite Difference [20] algo-
rithms, which are summarized below. 

Common Random Number Algorithm 
The Common Random Number method [19] employs the Stochastic Simula-

tion Algorithm to generate pairs of trajectories. The nominal and perturbed paths 
are coupled by considering the same array of [ ]0,1  uniform random numbers. 
The algorithm is presented below.  

1) For 1k =  to L.  
2) Draw a sequence of independent uniform ( )0,1  random numbers.  
3) For this sequence of random numbers, apply SSA to compute the k-th pair 

of nominal and perturbed trajectories, [ ] ( ),k t cX  and [ ] ( ),k t c h+X .  
4) Use a finite-difference scheme to estimate the sensitivity of the k-th trajec-

tory as  

( )
[ ] ( )( ) [ ] ( )( ), ,

.
k k

k

t c h t c
t

h

+ −
=

f X f X
Γ  

5) End for loop.  
Common Reaction Path Algorithm 
The Common Reaction Path strategy [19] generates the trajectories by apply-

ing the Random Time Change Algorithm. In other words, this algorithm com-
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putes two trajectories based on the next reaction method, coupled based on the 
random time change representation (2). In this case, the perturbed and unper-
turbed paths are coupled utilizing the same array of unit exponential random 
numbers.  

1) For 1k =  to L.  
2) Generate M sequences of unit exponential random numbers 1 2, ,j jE E   

for 1,2, ,j M=  .  
3) For these sequences of random numbers, apply the RTC algorithm to 

compute the k-th pair of nominal and perturbed trajectories, [ ] ( ),k t cX  and 
[ ] ( ),k t c h+X .  
4) Use a finite-difference scheme to estimate the sensitivity of the k-th trajec-

tory as  

( )
[ ] ( )( ) [ ] ( )( ), ,

.
k k

k

t c h t c
t

h

+ −
=

f X f X
Γ  

5) End for loop.  
Coupled Finite Difference Algorithm 
The Coupled Finite Difference technique [20] applies a strong coupling of the 

paths utilized for estimating the sensitivity by a finite-difference scheme. As a 
result of this strong coupling between the nominal and perturbed trajectories, 
the method reduces the estimation variance. This lowers the computational cost 
of obtaining the desired accuracy of the sensitivity estimation. The CFD relies on 
the Next Reaction Method and the Random Time Change representation [20].  

1) Initialize time and states: 0t = , [ ] ( ) [ ] ( ) 0, ,k kt c h t c x+ = =X X .  
2) For j and for 1: 3i = , take , 0j iT =  and ( ), 0,1j ir rand= , ( ), ,ln 1j i j iP r= .  
3) While t T< .  
a) For 1:j M= . 
i) Evaluate [ ] ( )( ), ,k

ja t c cX  and [ ] ( )( ), ,k
ja t c h c h+ +X .  

ii) Determine.  

[ ] ( )( ) [ ] ( )( ){ }
[ ] ( )( )
[ ] ( )( )

,1

,2 ,1

,3 ,1

min , , , , , ,

, , ,

, , .

k k
j j j

k
j j j

k
j j j

A a t c c a t c h c h

A a t c h c h A

A a t c c A

= + +

= + + −

= −

X X

X

X

 

iii) For 1: 3i =  if , 0j iA > , ( ), , , ,j i j i j i j it P T Aδ = − , else ,j itδ = ∞ .  
b) Obtain { }, ,min j i j it tδ∆ =  and find the indices for minimum, { }* *,r j i= .  
c) if * 1i = , [ ] ( ) [ ] ( ) *, ,k k

j
t t c h t c h µ+ ∆ + = + +X X  and  

[ ] ( ) [ ] ( ) *, ,k k
j

t t c t c µ+ ∆ = +X X , else if * 2i = ,  
[ ] ( ) [ ] ( ) *, ,k k

j
t t c h t c h µ+ ∆ + = + +X X  and [ ] ( ) [ ] ( ), ,k kt t c t c+ ∆ =X X , else  

[ ] ( ) [ ] ( ) *, ,k k
j

t t c t c µ+ ∆ = +X X  and [ ] ( ) [ ] ( ), ,k kt t c h t c h+ ∆ + = +X X .  
d) t t t= + ∆ .  
e) For 1:j M=  and 1: 3i = , let , , ,j i j i j iT T t A= + ∆ ⋅ . 
f) Take ( )ln 1r rP P η= + , with ( )0,1randη = .  
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4) End while.  
5) Estimate the sensitivity of the k-th trajectory by  

( )
[ ] ( )( ) [ ] ( )( ), ,

.
k k

k

t c h t c
t

h

+ −
=

f X f X
Γ  

For the Common Random Number, the Common Reaction Path and the 
Coupled Finite Difference algorithms, an estimation of the sensitivity of  

( )( ),t c   f X  with respect to parameter c is obtain by taking the component-wise 
sample average of ( ){ } 1, ,k k L

t
=

Γ


. Remark that the smaller the standard deviation 
of the sensitivity estimator, the more effective the estimator is for a similar accu-
racy. Frequently, the CFD method outperforms the CRP and the CRN schemes 
in terms of computational efficiency, for a comparable accuracy of the sensitivity 
approximation [20].  

4. Sensitivity of Higher-Order Moments 

In this section, we introduce some techniques for estimating local sensitivities of 
higher-order moments of the state of a well-stirred biochemical network. As 
discussed above, the dynamics of the biochemical network is governed by the 
Chemical Master Equation, a stochastic discrete model. Parametric sensitivities 
of higher-order moments of ( ),t cX  (e.g. its variance) with respect to model 
parameters quantify the influence of the parameters on the intrinsic noise in the 
system. In this work, the approximations of the sensitivities are determined by 
finite-difference strategies. While finite-difference sensitivity estimators were 
proposed in the literature [16] [19] [20], these estimators were applied exclu-
sively to compute the local sensitivities of the expected value of the system state, 

( ),t c c∂ ∂   X . Still, for many models, the local sensitivity of the average path 
may not provide sufficient information on the robustness of the system with re-
spect to variations in a parameter. Then, a sensitivity analysis of higher-order 
moments of the state is required for a more thorough study of the effect of the 
parameters on the system behaviour. Such an analysis is particularly important 
for models with a significant level of noise. To estimate local sensitivities of 
higher-order moments, we need to approximate the expectations ( )( ),t ⋅  f X  
of the coupled paths corresponding to small variations around the nominal pa-
rameter value. This approximation is performed for ( ) ( )T

1, , Nf x x x x= =  , 
( ) ( )T2 2

1 , , Nx x x= f ,  , ( ) ( )T

1 , ,n n
Nx x x= f . For example, let us consider the  

parametric sensitivity ( )( ),t c
c
∂   ∂
 f X , where ( ),t c   X  is the variance of  

the system state ( ),t cX  and c is the parameter of interest. To estimate this sen-
sitivity by finite-difference schemes, we need to approximate the expectations 

( ),iX t ⋅    and ( )2 ,iX t ⋅   on coupled paths. Indeed, we observe that for 
each 1, ,i N=   we have  

 ( ) ( ) ( ) ( )2, , 2 , , .i i i iX t c X t c X t c X t c
c c c
∂ ∂ ∂ = −           ∂ ∂ ∂
         (3) 

Adopting a central finite-difference strategy, we derive the following approxima-
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tion of the sensitivity of the variance  

 ( ) ( ) ( ){ }1, , , ,
2i i iX t c X t c h X t c h

c h
∂

≈ + − −          ∂
          (4) 

which may be written as  

 
( ) ( ) ( )( ){ }

( ) ( )( ){ }

2

2

1, , ,
2

1 , , ,
2

i i i

i i

X t c X t c h X t c h
c h

X t c h X t c h
h

∂  ≈ + − +        ∂

 − − − −    

  

 
     (5) 

or as  

 
( ) ( ) ( ){ }

( )( ) ( )( ){ }
2 2

2 2

1, , ,
2

1 , , .
2

i i i

i i

X t c X t c h X t c h
c h

X t c h X t c h
h

∂    ≈ + − −      ∂

− + − −      

  

 
    (6) 

Likewise, a central finite-difference estimation of the sensitivity of the skewness 
is  

 ( ) ( ) ( ){ }1, , , ,
2K i K i K iX t c X t c h X t c h

c h
∂

≈ + − −          ∂
        (7) 

where h is a small perturbation of the parameter c. The sensitivity of the mean,  

( ),iX t c
c
∂

  ∂
 , may also be approximated by central finite-difference tech-

niques. 
Employing Monte Carlo methods, we compute pairs of trajectories,  
[ ] ( ),k t c h+X  and [ ] ( ),k t c h−X , for 1 k L≤ ≤ . In what follows, the coupled 

trajectories [ ] ( ),k t c h+X  and [ ] ( ),k t c h−X  are generated numerically by the 
CRN, CRP or CFD strategies. The coupling will reduce the variance of each sen-
sitivity estimator. This will increase the computational efficiency of approximating 
the parametric sensitivity with a specified accuracy. Note that these trajectories may 
also be simulated by approximate methods, such as those coupling tau-leaping 
strategies [16] [22]. With the coupled paths computed above for the parameters 
( )c h+  and ( )c h− , we obtain the following estimator for the sensitivity of the  

variance, ( ),t c
c
∂

  ∂
 X , has the following components  

[ ] ( ) ( )( ) [ ] ( ) ( )( )2 2

, , ,
1

1 , , , ,
2

L
k kvar

i L i i L i i L
k

s X t c h X t c h X t c h X t c h
hL =

 = + − + − − − −  
∑ (8) 

where  

 ( ) [ ] ( ) ( ) [ ] ( ), ,
1 1

1 1, , , , ,
L L

k k
i L i i L i

k k
X t c h X t c h X t c h X t c h

L L= =

+ = + − = −∑ ∑    (9) 

are the averages over L trajectories, for 1 i N≤ ≤ . Observe also that a Monte 
Carlo sensitivity estimator of the mean ( )2

iX t   , with 1 i N≤ ≤ , by central 
finite-difference schemes is  

[ ] ( )( ) [ ] ( )( )2 2

,
1

1 , , .
2

L
k kvar

i L i i
k

X t c h X t c h
hL

µ
=

 = + − −  
∑  
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5. Numerical Experiments 

Below, we test the proposed sensitivity estimators of higher-order moments of 
the system state on three models of biochemical systems. In each case, the Monte 
Carlo simulations are performed on ensembles of 107 trajectories. Parameter 
sensitivities are approximated by central finite-difference methods. In our com-
putations, the perturbation h used for the finite-difference techniques represents 
5% of the value of the parameter of interest c. The numerical results indicate that 
sensitivity estimations adopting the CFD method are more accurate that those 
based on the other methods considered, the CRN and the CRP. For the first model, 
we applied the proposed strategies to approximate the sensitivities of the va-
riance and the skewness, whereas for the remaining models the sensitivity of the 
variance is estimated. In each case, we show the evolution in time of the para-
metric sensitivities, which are normalized with respect to the parameter of inter-
est. A similar analysis may be performed for other higher-order moments of the 
biochemical system state. 

5.1. Birth-Death Model 

First, we illustrate the accuracy of the sensitivity estimation methods on a simple 
reaction system, the birth-death model [4]. The biochemical reaction system is 
described in Table 1, which includes the reaction channels, the propensities and 
the reaction rate parameter values. The system consists of one species, S, under-
going two reactions. We integrated the system with the initial condition ( )0 10X = , 
on the time interval [0, 115].  

For this model, we applied the CRN, the CRP and the CFD strategies to gen-
erate 10 million coupled trajectories [ ] ( ),kX t c h+  and [ ] ( ),kX t c h− . These 
simulations are then used to estimate, by central finite difference schemes, the 
sensitivities in the kinetic parameters for the first three moments of the system 
state. Figure 1(a), Figure 1(c) and Figure 1(e) show the mean, variance and 
skewness of the evolution in time of the amount of S molecules, generated with 
the SSA, RTC and the NRM techniques. Figure 1(b), Figure 1(d) and Figure 
1(f) provide the plots of the central finite-difference approximations of the sen-
sitivities in parameters c1 and c2 of the mean, variance and skewness of the mo-
lecular S counts, as functions of time. The CRP, the CRN and the CFD algo-
rithms are employed in each case. For this model, the estimates of the sensitivi-
ties in the parameter of interest for each moment computed with the CRP, CRN 
and the CFD schemes agree very well and are accurate. Finally, the dependence 
on time of the standard deviations of the central finite-difference sensitivity esti-
mators of the means ( ),X t c    and ( )2 ,X t c    are displayed in Figure 2(a)  
 
Table 1. Birth-death model. 

 Reaction Propensity Parameter value 

1R  1c S∅→  1 1a c=  1 2.5c =  

2R  2cS →∅  2 2a c X=  2 0.1c =  
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Figure 1. Birth-death model: (a) Mean, (c) variance and (e) skewness of the number of S molecules by the SSA, the 
RTC and the NRM schemes. (b), (d) and (f) Central finite-difference estimators of the sensitivity to all parameters of 
the mean, variance and skewness of the S molecular counts, respectively. The 107 pairs of trajectories computed on the 
interval [0, 115] are determined with the CRN, CRP and CFD algorithms.  
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Figure 2. Birth-death model: Standard deviation of the finite-difference sensitivity estimators for (a) ( ),X t c    and (b) 

( )2 ,X t c   . The CRN, CRP and CFD algorithms are applied to generate 107 coupled sample paths on [0, 115].  

 
and Figure 2(b), respectively. The CFD sensitivity estimators have lower stan-
dard deviations than their CRN and CRP counterparts, thus are expected to be 
faster to simulate. 

5.2. Infectious Disease Model 

The infectious disease model [26] consists of two species which take part in five 
reactions. The species S1 represents the infected particles, while the species S2 
becomes infected from S1 according to the fifth reaction. The first two reaction 
channels show the death of the species S1 and S2. Finally, the production of these 
species is considered in the third and fourth reactions. The reaction channels of 
the infectious disease model are presented in Table 2, along with their propensi-
ties and the rate parameter values. The model is simulated on the time interval 
[ ]0,2  over 107 trajectories, for the initial species counts ( ) [ ]0 40,40X = . 

The sensitivity of the variance of the molecular counts with respect to kinetic 
parameters is estimated by central finite-difference schemes, utilizing the coupl-
ing of the CRP, CRN and the CFD methods. The dependence on time of the 
mean and variance of the number of S1 and S2 molecules are depicted in Figure 
3(a) and Figure 3(b). In each case, the simulations are advanced in time with 
the SSA, the RTC and the NRM algorithms. Also, the central finite-difference 
sensitivity estimations of the variance with respect to the parameter c1, as func-
tions of time, are shown in Figure 3(c) for species S1 and S2. The local sensitivity 
approximations for the variance using the CRN, CRP and CFD algorithms are in 
very good agreement. Similar results were obtained for the sensitivity estima-
tions with respect to the other kinetic parameters, but they are not included for 
brevity.  
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Table 2. Infectious disease model. 

 Reaction Propensity Parameter value 

1R  1
1

cS →∅  1 1 1a c X=  1 2c =  

2R  2
2

cS →∅  2 2 2a c X=  2 2.5c =  

3R  3
1

c S∅→  3 3a c=  3 25c =  

4R  4
2

c S∅→  4 4a c=  4 75c =  

5R  5
1 2 12cS S S+ →  5 5 1 2a c X X=  5 0.05c =  

 

 
Figure 3. Infectious disease model: (a) Mean and (b) variance of the molecular counts of all species, with the SSA, the RTC and 
the NRM strategies. (c) Central finite-difference estimators of the sensitivity to the parameter c1 of the variance of the S1 and S2 
molecular amounts. As before, the CRN, CRP and CFD strategies were adopted to simulate 107 coupled trajectories on the time 
interval [0, 2]. 
 

Lastly, we plotted the timecourse of the standard deviations of the central fi-
nite-difference sensitivity estimators with respect to c1, of the means ( ),iX t c    
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in Figure 4(a) and ( )2 ,iX t c    in Figure 4(b), for 1i =  or 2. As with the 
previous model, the sensitivity estimators based on the CFD implementation 
provide lower standard deviations compared to the CRN and to the CRP ones. 
As a consequence, the CFD sensitivity estimators are more efficient. 

5.3. Michaelis-Menten Model 

The third numerical investigation considers the Michaelis-Menten model [11]. 
This model describes the enzyme-substrate system, which is a crucial mechan-
ism, and consists of a set of three reactions involving four biochemical species. A 
substrate S1 and an enzyme S2 react to create an enzyme-substrate complex S3. 
This complex can unbind to yield the substrate and the enzyme. Furthermore, 
the complex may also create a product S4, a modified form of the substrate, and 
the enzyme. 

Table 3 specifies the reactions, the propensities and the corresponding para-
meter values for this example. The biochemical system’s volume is 1510vol −=  
and the Avogadro’s number is 236.023 10An = × .  

The initial state of the Michaelis-Menten model is ( ) [ ]T0 301,120,0,0=X . 
In our investigation, the numerical simulations are carried out on 10 million 
coupled trajectories with the Common Random Number, the Common Reaction 
Path and the Coupled Finite Difference methods, on the time-interval [0, 25]. As 
before, the perturbation h corresponds to 5% of the nominal value of the para-
meter. 

Our findings are presented below. In Figure 5(a) and Figure 5(b), we com-
pare the evolution of the mean and the variance of the molecular counts of all 
species, computed using the Stochastic Simulation, the Random Time Change  
 

 
Figure 4. Infectious disease model: Standard deviation of the central finite-difference sensitivity estimators to parameter c1 of all 
species for (a) ( ),iX t c    and (b) ( )2 ,iX t c    with 1i =  or 2. In this case, 107 pairs of trajectories were computed on the 

time-interval [0, 2], coupled with the CRP, CRN and CFD methods.  

https://doi.org/10.4236/am.2022.1311056


F. Jabeen, S. Ilie 
 

 

DOI: 10.4236/am.2022.1311056 892 Applied Mathematics 
 

Table 3. Michaelis-Menten model. 

 Reaction Propensity Parameter value 

1R  1
1 2 3

cS S S+ →  1 1 1 2a c X X=  
6

1
10

A

c
n vol

=
⋅

 

2R  2
3 1 2

cS S S→ +  2 2 3a c X=  4
2 10c −=  

3R  3
3 2 4

cS S S→ +  3 3 3a c X=  3 0.1c =  

 

 
Figure 5. Michaelis-Menten model: (a) Mean and (b) variance of the molecular quantities of all species, with the SSA, the RTC 
and the NRM algorithms. (c) Central finite-difference sensitivity estimators of the variance of the S1 and S2 abundances to the 
parameter c1. The simulation of 107 pairs of trajectories on [0, 25] utilized the coupling of the CRN, CRP and CFD strategies.  

 
and the Next Reaction Method algorithms, for the nominal values of the para-
meters. The behaviour predicted by the three exact Monte Carlo strategies is al-
most identical. Further, we conducted a sensitivity analysis by employing the fi-
nite-difference techniques introduced above, with coupling given by the CRN, 
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CRP and CFD algorithms. The time dependence of the local sensitivity estimates 
of the variances for the S1 and S2 molecular counts with respect to c1 is shown in 
Figure 5(c). The parametric sensitivities are approximated by the central fi-
nite-difference methods outlined in Chapter 4, and are normalized with respect 
to the parameter c1. The CRP, CRN and CFD approximations have a comparable 
accuracy in this case. Moreover, equivalent outcomes are found for the sensitiv-
ity estimates of the second moment of the S3 and S4 molecular numbers (omitted 
for conciseness). To conclude, the numerical results reveal the excellent agree-
ment of the proposed finite-difference sensitivity estimators of the variance, for 
all species. 

6. Conclusions 

In the present work, we present some numerical strategies for estimating pa-
rametric sensitivities for stochastic discrete models of homogeneous biochemical 
systems. Specifically, we introduce computational tools to approximate local sensi-
tivities of higher-order moments, such as the variance, of the system state. The 
model studied here is the Chemical Master Equation, which has been success-
fully applied to a large class of biochemical reaction networks in a cell. This dis-
crete and stochastic model is quite challenging to simulate and analyze for many 
realistic biochemical networks. The proposed methods are valuable for investi-
gating the robustness properties of higher-order moments of a biochemical sys-
tem state, while previous works focused on the sensitivity of its expected value. 
Such tools are particularly important for models with moderate to large levels of 
noise, or for which the random fluctuations due to molecular interactions direct 
the system behaviour. For such systems, investigating the mean trajectory is of-
ten not sufficient for an in-depth analysis of the features of the stochastic model. 
Parametric sensitivities of higher-order moments quantify how parameters in-
fluence the intrinsic noise and give insight into the dynamics of the biochemical 
system. 

The methods we introduced utilize central finite-difference schemes and Monte 
Carlo strategies for estimating the parametric sensitivities. More precisely, we 
considered exact Monte Carlo techniques and coupled the pairs of trajectories 
through existing strategies, namely the Common Random Number, Common Reac-
tion Path and Coupled Finite Differences schemes. The coupling reduced the va-
riance of the sensitivity estimators, leading to a decreased computational cost. 
Hence, the proposed techniques provide an accurate and effective sensitivity es-
timation of the moments of interest, for a stochastic process governed by the 
Chemical Master Equation. These methods were successfully tested on different 
models arising in applications and shown to be accurate and in excellent agree-
ment with each other. It is expected that these strategies are far more efficient 
than the sensitivity estimators of higher-order moments which are not based on 
coupling. While the Common Random Number, Common Reaction Path and 
Coupled Finite Difference algorithms were applied in this work, it is worth ob-
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serving that the approach proposed above may be modified to adopt other fi-
nite-difference sensitivity methods to investigate higher-order moments, such as 
those based on tau-leaping schemes. 
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