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ABSTRACT 
 

The comparison of several associated species and plant genome sequencing efforts has increased 
in recent years. The inflated level of the genomic variety leads to the discovery that the single 
reference genomes may not reflect the variability in a species, resulting in the evolution of a pan-
genome idea. Pan-genomes exhibit a species' genetic variability and contain mutant genes lacking 
in some individuals and essential genes present in all individuals. Mutant gene classifications often 
reveal cross-species parallels, including genes for abiotic and biotic stresses generally concentrated 
within mutant gene groupings. Here we discuss the history of pan-genomics in plants, investigate 
the causes of gene variation, deletion, and existence and demonstrate why pan-genomes might 
assist crop genetics and breeding research. 
 

 
Keywords: Pan-genome; presence and absence variations; whole-genome assembly; mutant gene; 

polyploid; transposable elements; homoeologous exchange. 
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1. INTRODUCTION 
 
The notion of pan-genomes was initially 
introduced in bacteria in 2005 [1] when the 
sequencing of numerous strains of 
Streptococcus agalactiae identified an important 
genome characterized by 80% of S. agalactiae 
genes, while the remaining 20% missing in at 
least one isolate [1]. However, it took a decade 
following the initial bacterial pan-genome effort to 
develop plant pan-genomes. Although this was 
mainly owing to the significant costs associated 
with collecting and analyzing data, it was also 
anticipated that there would be very little gene 
presence and absence variations (PAVs) in 
higher species since they transfer genetic 
material not as easily as microbes [2]. When it 
was first utilized in plants in 2007, it was used to 
find small mutant sections of the rice and maize 
genomes that differed from each other [3]. 
However, because of the absence of precise 
whole-genome assemblies for numerous 
individuals of the same species at the time, it 
was impossible to determine the extent to which 
genes were present or absent. When the cost of 
DNA sequencing decreased, it became practical 
to compare complete genomes of different 
individuals, and three broad methodologies for 
supra-genome assembly were devised [3] (Fig. 
1). The initial approach was whole-genome 
assembly (WGA) and comparison, which 
involves assembling and comparing the 
genomes of various individuals [4,5]. This was 
then supplemented by the repeated assembly 
and, PAV strategy, in which genomic sequences 
from several species are matched to a database, 
and unaligned data is assembled and contributed 
to the increasing pan-genome reference. 
Following that, entire readings are remapped to 
the pan-genome, which allows for accurate PAV 
calling throughout the population. In recent 
years, a lot of progress has been observed in 
graph-regulated pan-genome assembly, which 
constructs a network expressing genetic 
conservation and variability [6]. 
 
In addition to being highly complementary, the 
WGA and comparison strategy provides critical 
structural and gene whereabouts. In contrast, the 
recurring assembly technique allows the 
extension of research to exceptionally multiple 
participants, identifying infrequent genes and the 
dispersion of PAV in a population. It has only 
recently become possible to use graph assembly 
in more complicated genomes. If we study 

microbes, graph assembly has been used a lot 
since long-read DNA sequencing has become 
more credible.  
 
Each of these methods has advantages and 
disadvantages; for example, a repetitive 
assembly cannot distinguish between high 
sequence variation at a locus and sequence 
addition or deletion, whereas WGA cannot 
distinguish among true genome diversity across 
individuals and frequent mistakes and variation 
reported in assembling and annotating methods. 
The graph-based analyses of plant genomes are 
just valuable for a small number of plant 
genomes right now because they require a lot of 
memory and data space, and they also have 
other limitations. 
 
Recently, a lot of focus on plant supra-genome 
investigations is observed (Table 1). In order to 
create the first plant pan-genome, seven wild 
soybean individuals were contrasted for the first 
time [7]. The results revealed a significant 
variation in seed yield and size, seed structure, 
days to flower and maturation time, and further 
copies of disease tolerance genes in the wild G. 
soja. When 18 Arabidopsis thaliana accessions 
were evaluated [8] in a prior study, the 
researchers focused on protein isoforms and 
gene expression instead of gene availability and 
unavailability. In parallel with the soybean 
genome assemblies, a loss in the S5 hybrid 
infertility region in a single genotype and PAVs in 
the subsurface resistance gene Sub1A were 
detected in a short rice supra-genome derived 
from four different genotypes [9]. 
 
In a recent study of seven de novo constructed 
Brassica napus genomes, two PAVs, each 
representing hAT retrotransposon incisions 
inside known flowering time genes, were 
discovered to be linked with flowering time [10]. 
Another research in A. thaliana found non-
syntenic hotspots of rearrangements (HOTs) 
linked to sequential duplications based on seven 
assemblages [11]. There is less meiotic 
recombination in these HOTs, and they have 
fewer genes, with disease resistance genes 
being substantially more prevalent. Mining for 
HOTs in other plant species is presently not 
viable owing to a lack of high genomic assembly 
for several individuals of a species. There has 
not been any evidence of a link between                
disease tolerance and hotspots for 
rearrangement. 
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Fig. 1. Comparison of Pan-genome approaches 
 
A number of pan-genome studies, including 
Brassica oleracea (based on 10 individuals [12]), 
bread wheat (based on 18 individuals [13]), and 
canola (based on 53 individuals [14]) have used 
the iterative mapping and assembly approach [4] 
to reduce the expense of producing high-quality 
assemblies for numerous individuals. Two 
important findings were made in these initial 
plant pan-genome studies: each species studied 
had between 15% and 40% of its total number of 
gene content, and genes that make PAV are 
often linked to biological and environmental 
stress resistance. 
 
Other recent research has included the analysis 
of a pan-genome using 54 Brachypodium 
distachyon plants, which discovered additional 
7,134 genes and found that certain mutant genes 
are core genes inside sub-populations [15], 
hence sustaining the population structure. Five 
sesame plants were utilized to generate a 
sesame pan-genome [16], allowing for genetic 
differentiation among traditional and 
contemporary sesame varieties. This suggests 
that pan-genomes may be used to identify 

alterations in the gene frequencies throughout 
cultivation and breeding. There were three genes 
associated with seed weight in the latest pan-
genome research of 90 individuals of Cajanus 
cajan, demonstrating that presence and absence 
variations (PAVs) may be used to enhance SNPs 
for trait correlation [17]. 
 
There is a rising interest in the dispersion of 
mutant genes in populations as a result of the 
growing popularity of pan-genome studies. More 
than 10,000 new genes were identified in a rice 
supra-genome study of 66 representative 
samples from 387 wild Oryza rufipogon and 1100 
O. sativa genotypes [9]. Additionally, they 
confirmed prior findings from three rice 
accessions [18] linking submergence tolerance 
and phosphate deficiency tolerance genes. Using 
725 distinct tomato lines, a pan-genome analysis 
was conducted [19] that discovered 4,873 genes, 
mostly were associated with disease tolerance. 
The study also discovered an atypical allele 
associated with Solanum lycopersicum flavor that 
was chosen during domestication but re-
emerged in current Solanum lycopersicum 
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varieties as a result of wild introgressions. There 
has recently been an investigation into the 
diversity associated with agronomic traits in 
soybean using a pan-genome research that 
united the assembly of 27 lines with re-
sequencing data from 2,898 different lines [20]. 
 
2. PAN-GENOMES AND PLANT BIOLOGY 
 
Many of the plants used for reference genome 
sequencing have historical significance; such as 
the Triticum aestivum cultivar Chinese Spring 
was chosen for reference genome sequencing 
because it was this cultivar that the current 
karyotype system was developed [21]. The 
genes of Chinese Spring, on the other hand, are 
considerably different from that of current 
cultivars. Using the initial T. aestivum pan-
genome research, scientists discovered 11,840 
genes, found in 22 re-sequenced current types 
but missing from Chinese Spring [22]. The usage 
of a single reference (SR) may influence our 
knowledge of the genetic foundations of 
phenotypes; such as, the Lr49 T. aestivum rust 
tolerance gene exhibits unusual structural 
diversity across cultivars [19]. A wide range of 
genomic studies will get better if they use pan-
genomes as references. For instance, utilizing a 
pan-genome assembly increases short-read 
mapping efficiency over an SR, leading to better 
mutant calls and more exact measurements of 
gene expression [23-25]. It is still difficult to 

distinguish plant species solely on gene 
encoding, especially when there is a lot of 
variation in gene PAV across individuals. 
However, when more species' pan-genomes are 
created, a better knowledge of gene retention 
and deletion might well aid in establishing 
species-level modifications in gene            
expression. 
 
Gene PAV can be used to boost agricultural 
yields and plays an important role in the study of 
fundamental biology. More than 30% of the 
advances in crops production in the late 20th 
century were attributable to crop wild relatives 
utilization in the crop breeding programs [26]. 
Crop wild relatives frequently have a greater 
collection of genes and represent a rich 
foundation of genetic diversity for crop breeding. 
With the use of pan genomic research, we can 
examine gene retention and deletion during 
breeding and adaptation [27], which assists in 
discovering dispersed variability and the 
capability of incorporating genes into current 
cultivars. Such as, gene deletion related to flavor, 
which occurred during the introduction of 
tomatoes in Chile, Mexico, and Brazil, has 
recently been incorporated into new varieties 
[28]. Gene distribution research among wild 
species in various settings might aid in the 
development of agricultural plants that are more 
adaptable to a variety of environments and more 
resilient to climate change [29]. 

 
Table 1. Description of various plant pan genome studies 

 

Species  Approach  Domestication 
status  

Ploidy  Number of 
accessions  

Pangenome 
genes  

References  

Soybean  De novo  Crop Diploid  204 3,621 [10] 
Maize  Iterative  Crop Diploid  503 8,681 [11] 
Maize  De novo  Crop  Diploid  2 - [12] 
Wheat  Iterative  Crop  Hexaploid  18 140, 500  [13] 
Soybean  De novo Wild and crop  Diploid  26 57,492 [14] 
Brassica 
rapa 

De novo Crop  Diploid  3 41,858 [15] 

Glycine 
soja  

De novo Wild  Tetraploid  7 59,080 [16] 

Populus  Read 
mapping 

Wild  Diploid  7 - [17] 

Brassica 
napus  

Iterative 
assembly  

Crop  Tetraploid  53 94,013 [18] 

Pepper  Iterative 
assembly  

Crop Diploid 383 51,757 [19] 

Tomato Iterative 
assembly 

Crop  Diploid  725 40,369 [20] 

Juglans 
(walnut) 

De novo  Wild  Diploid  6 26,458 [21] 
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Disease resistance genes have a negative 
impact on fitness [30]. However, recent 
discoveries of multiple genes across plant supra-
genomes have revealed that they are 
accumulated for genes engaged in adaptations 
to abiotic and biotic stress, specifically for genes 
associated with disease resistance. Wheat [31], 
rapeseed [32], wild cabbage [33], and tomatoes 
[34] are all examples of monocots and dicots that 
have been shown to contain a wide range of 
disease-resistant genes and human-based pan-
genomes have also reported similar results 
[35,36]. The discovery of the NLR disease 
resistance genes has given birth to the idea of a 
pan-genome research study called the pan-
NLRome [37]. It has only been used in A. 
thaliana [38] until now, and only 37 out of 64 
accessions were adequate to get 90% of the 
NLR genes. A large number of disease 
resistance genes are clustered together in 
physical clusters [39–42], with some of them 

exhibiting significant variation [43,44]. Clustered 
genes may be different from unclustered genes 
because of the irregular crossing over and 
meiotic disruption due to orthologous repeats in 
these clusters [45]. This happens only for specific 
kinds of disease tolerance genes (type I), 
whereas type II genes prove only a few genomic 
changes in wild cabbage [46], which is similar to 
findings in Arabidopsis thaliana [47]. 
 
While disease resistance genes are abundant in 
the mutant gene fraction in many plant species, 
this is not true in all. The Amborella pan-genome, 
for example, has a small number of disease 
resistance genes, most of which are core genes, 
which might represent the species' unique 
geographic location and evolutionary record. 
Abiotic stress and environmental adaptability are 
frequently connected with mutant genes [19,32], 
implying that these genes may be useful in crop 
breeding techniques in the future. 

 

 
 

Fig. 2. Different sources for novel genes 
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3. INCEPTION OF MUTANT GENES IN 
PLANTS  

 
Even though the predominance of the gene PAV 
has been well documented, the genesis of 
mutant genes is still a subject of much debate. 
Several processes of gene losses and gains 
have been identified in plants, all of which have 
the potential to contribute to mutant gene 
creation (Fig. 2). Introduction from similar 
species, horizontal gene transmission, and de 
novo gene formation are all ways to get new 
genes [48-52]. As a consequence of deletions, 
such as those resulting from intra-chromosomal 
recombination and pseudogenization, genes may 
potentially be lost [12,53,54]. The study of pan-
genomes in plants gives a complete picture of 
how different mechanisms of addition and 
deletion affect the total number of genes in 
organisms, as well as how adaption can change 
the frequency of different genes. 
 
There appear to be a higher fraction of mutant 
genes in polyploid species compared to diploid 
species; however, there are presently not many 
polyploid pan-genomes accessible to corroborate 
this tendency. Dominant sub-genomes can affect 
allopolyploid gene content, as seen in Fragaria × 
ananassa [55,56] and B. napus [57,58], with the 
dominant sub-genomes containing a higher 
number of significant genes. In the case of 
WGDs (whole-genome duplications), the entire 
gene complement is doubled and is often 
followed by gene loss, renowned as fractionation. 
After differential fractionation, the B. lineage had 
a whole-genome triplication, which produced 
three sub-genomes: LF; the lowest fractionated, 
MF1; the most fractionated first, and MF2; the 
most fractionated second [59,60]. The pan-
genome of B. oleracea showed that there was a 
statistically significant relationship between the 
sub-genome assembly and the number of mutant 
genes, with MF2 having the most and LF having 
the fewest [61]. On extremely short evolutionary 
time scales, the sub-genomic position of mutant 
genes in canola is expected to correlate with the 
rate of gene loss, which connects with an 
intraspecies variation. 
 
Moreover, most of the mutant genes in B. 
oleracea were not allocated to sub-genomes 
[62,63], echoing a finding in Brachypodium that 
mutant genes are less syntenic with orthologous 
sections in other grasses, showing that they are 
developed outside of syntenic blocks [64]. 
Sesamum indicum, which experienced whole-
genome duplication roughly 80 million years ago, 

was the subject of pan-genome research that 
sought to determine the origin of core and mutant 
genes. Whole-genome duplication was shown to 
be responsible for more than one-third of the 
core genes and just around 12% of the mutant 
genes. Many of the mutant genes assigned to 
the whole-genome duplication origin, do not 
occur in syntenic blocks, which explains the low 
fraction of mutant genes attributed to the whole-
genome duplication origin. Local tandem 
duplications could be attributed to a comparable 
percentage of the core and mutant genes (both 
10 percent), indicating that, for S. indicum, 
tandem duplications (TD) are not a substantial 
cause of mutant genes, despite the presence of 
line-specific variations [65]. 
 
Another typical source of gene PAV in 
amphipolyploid plants is the homoeologous 
exchange (HE), which occurs in amphidiploid 
plants [23,66]. As previously mentioned, 
rapeseed is one species in which significant 
homoeologous exchanges have been discovered 
and associated with phenotypic variation 
[5,29,67,68]. In rapeseed, substantial 
homoeologous exchanges have been found and 
connected to phenotypic diversity. In rapeseed, 
where A genome replacement is more common 
than C genome replacement, it is proposed that 
directionally influenced HEs might result in sub-
genome dominance [69-72], as shown in wheat 
[73], polyploid strawberry [74], non-crop monkey-
flower [75-78], cotton [79,80] and coffee [67]. A 
pan-genome study of the rapeseed genome 
indicated two categories of gene PAV incidents: 
non-homoeologous exchange PAV (in which 
single genes differ) and homoeologous exchange 
PAV (in which lengthy extends of successive 
genes are missing caused by large genomic 
region exchanges) [33]. 
 
In plants, transposable elements (TEs) have 
been linked to genic variation development, 
according to pan-genome studies. The 
relationships between transposable elements, 
gene mobility, and gene PAV have been well 
established for many years [65,81–83]. In recent 
years, however, pan-genome research has 
provided a more refined view on the role of 
transposable elements on gene variability, 
indicating that intraspecies TEs dynamics may 
considerably contribute to the variation in gene 
addition and deletion [34,65]. It has been 
documented in B. oleracea [33] and 
Brachypodium [36,60] that TEs and varied genes 
are associated, and it has also been reported in 
rapeseed disease resistance genes [33] that TEs 
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are associated with mutant genes [32,58]. As 
previously stated, a rapeseed pan-genome 
based on complete genomic sequences of seven 
populations indicated a role for different TEs in 
the regulation of agronomic parameters [30], 
which is consistent with prior results. From 
Barbara McClintock's discovery of genetic 
variants that may be changed in maize [84], TE 
activity has been shown to be correlated with 
genome rearrangement. Multiple instances of 
TEs that led to the gene PAV are reported, most 
notably in A. thaliana [83] and Z. mays [65]. To 
further understand the TE–PAV relationship, 
additional pan-genome investigations, such as 
examining whether particular transposable 
element families are probably more linked to 
PAVs than others and if such links are species-
specific or universal, would be helpful to 
researchers. It is constantly being worked on to 
improve the techniques for predicting and 
categorizing TEs within genome assemblies [85–
87], which will eventually result in improved 
knowledge of the function of transposable 
elements in gene diversity in the near future. 
 
De novo gene origin [87] is a source of mutant 
genes that have been relatively understudied in 
comparison to other sources. When the genomes 
of thirteen Oryza related species were examined, 
researchers discovered 185 de novo ORFs in the 
primary species, Oryza japonica, indicating that 
de novo gene origin is important for the creation 
of proteome variability in this species. Long non-
coding RNAs have also been considered as a 
possible source of new proteins for protein 
synthesis [88,89] since they seem to be 
genetically efficient from protein-coding genes 
and also have higher tissue selectivity [90]. 
Researchers observed that non-coding 
transcripts were responsible for the majority of 
the de novo genes identified in Oryza [63]. In 
turn, comprehensive annotation and research of 
long non-coding RNAs (lncRNAs) may, as a 
result, broaden the repository of plant-specific 
genes and increase the likelihood of the 
identification of new proteins throughout the 
evolution process. 
 
4. CONCLUSION AND FUTURE DIRECTIONS 
 
The growing abundance of genome sequence 
data has aided pan-genome investigations, and 
this trend will continue as long-read sequence 
data quality and affordability increase rapidly. 
Over time, as we get a better grasp on the 
influence of mutant genes, it is possible that 
single reference assemblies may be rendered 

obsolete in favor of pan-genome reference 
assemblies. This would provide a wealth of 
information on genome evolution, selection, and 
functional properties. 
 
Many researchers are struggling with the storage 
and display of pan-genome datasets. Because of 
the abundance of long-read sequence data, it is 
possible to use vg [91] or MGR [92] to store 
variations for whole populations. This allows the 
use of pan-genome mutation graphs, which 
record mutations for whole populations. 
Standards for genome structure and 
classification are needed to facilitate structural 
variance in genomes. When it comes to plant 
breeding populations, the use of feasible 
haplotype graphs for the expandable generation 
of pan-genomes represents a significant 
advancement [93,94]. In order to abstain from 
difficulties in arranging extremely variable and 
recurring sections, these graphs depend on a 
reference genome correlated pathway that uses 
genes as anchors. 
 
A major problem is that gene and genome 
functional annotation methods are substantially 
behind methodologies for genomic assembly, 
and the purpose of numerous variable genes 
remains unsolved. However, we know that 
mutant genes have some characteristics in 
common, including that they are least likely to be 
syntenic, evolve under less evolutionary 
limitations, and have low expression levels 
[95,96]. According to researchers, developing a 
better knowledge of the roles and connections 
among the core and mutant genes would 
considerably contribute to the utility of pan-
genome investigations. The use of integrative 
genomics approaches, which attempt to relate 
features of genes such as sequence integrity to 
their function, relationships in biological 
networks, and expression level [97], could be a 
possible approach. 
 
Most pan-genome research conducted up till now 
has concentrated on the gene-containing 
portions of genomes; nevertheless, genomic 
areas outside of genes have been shown to 
account for a significant fraction of phenotypic 
variability in plants [98]. This shows that many 
essential breeding parameters, such as gene 
PAV, may be influenced by variations in gene 
regulation instead of gene expression. For 
instance, a promoter related to fruit flavor 
[38,97,98] was discovered under selection in the 
Solanum lycopersicum pan-genome. With the 
use of epigenomic functional annotations, pan-
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genomes give a wealth of information on 
regulators that may be mined for breeding 
purposes. 
 
Pan-genomes of prokaryotic organisms have 
recently been discovered and even crossing 
phylum borders, with one research including 
8,203 genomes from 10 different prokaryotic 
phyla [95]. These investigations are 
computationally viable since the genomes of 
haploid prokaryotes are very tiny. Although no 
pan-genome has yet been discovered in plants, 
this is most likely due to computational and 
funding restrictions on researchers. The ability to 
link pan-genomes at the genus or even family 
level will likely become more accessible as 
sequencing expenditures continue to decline and 
computational power increases. This will allow us 
to think critically, like what gene content is 
needed to produce a legume, which will be 
possible as sequencing expenditures keep falling 
and computational power continues to rise. At 
last, this will enable us to anticipate and define 
the gene composition of every plant species, 
information that will have a profound impact on 
future genome research in general. Such 
comprehensive pan-genomes will enable us to 
address a question of centuries: which genes are 
responsible for the formation of a plant? 
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