GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice

Tian, Jide and Middleton, Blake and Lee, Victoria Seunghee and Park, Hye Won and Zhang, Zhixuan and Kim, Bokyoung and Lowe, Catherine and Nguyen, Nancy and Liu, Haoyuan and Beyer, Ryan S. and Chao, Hannah W. and Chen, Ryan and Mai, Davis and O’Laco, Karen Anne and Song, Min and Kaufman, Daniel L. (2021) GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice. Biomedicines, 9 (1). p. 43. ISSN 2227-9059

[thumbnail of biomedicines-09-00043.pdf] Text
biomedicines-09-00043.pdf - Published Version

Download (1MB)

Abstract

Some immune system cells express type A and/or type B γ-aminobutyric acid receptors (GABAA-Rs and/or GABAB-Rs). Treatment with GABA, which activates both GABAA-Rs and GABAB-Rs), and/or a GABAA-R-specific agonist inhibits disease progression in mouse models of type 1 diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and COVID-19. Little is known about the clinical potential of specifically modulating GABAB-Rs. Here, we tested lesogaberan, a peripherally restricted GABAB-R agonist, as an interventive therapy in diabetic NOD mice. Lesogaberan treatment temporarily restored normoglycemia in most newly diabetic NOD mice. Combined treatment with a suboptimal dose of lesogaberan and proinsulin/alum immunization in newly diabetic NOD mice or a low-dose anti-CD3 in severely hyperglycemic NOD mice greatly increased T1D remission rates relative to each monotherapy. Mice receiving combined lesogaberan and anti-CD3 displayed improved glucose tolerance and, unlike mice that received anti-CD3 alone, had some islets with many insulin+ cells, suggesting that lesogaberan helped to rapidly inhibit β-cell destruction. Hence, GABAB-R-specific agonists may provide adjunct therapies for T1D. Finally, the analysis of microarray and RNA-Seq databases suggested that the expression of GABAB-Rs and GABAA-Rs, as well as GABA production/secretion-related genes, may be a more common feature of immune cells than currently recognized.

Item Type: Article
Subjects: SCI Archives > Biological Science
Depositing User: Managing Editor
Date Deposited: 20 Dec 2022 11:39
Last Modified: 20 Jul 2024 05:40
URI: http://science.classicopenlibrary.com/id/eprint/496

Actions (login required)

View Item
View Item